除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数。
AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度$\boldsymbol{g}_t$按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$。在时间步0,它的所有元素被初始化为0。给定超参数$0 \leq \rho < 1$(对应RMSProp算法中的$\gamma$),在时间步$t>0$,同RMSProp算法一样计算
$$\boldsymbol{s}t \leftarrow \rho \boldsymbol{s}{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. $$
与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量$\Delta\boldsymbol{x}t$,其元素同样在时间步0时被初始化为0。我们使用$\Delta\boldsymbol{x}{t-1}$来计算自变量的变化量:
$$ \boldsymbol{g}t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, $$
其中$\epsilon$是为了维持数值稳定性而添加的常数,如$10^{-5}$。接着更新自变量:
$$\boldsymbol{x}t \leftarrow \boldsymbol{x}{t-1} - \boldsymbol{g}'_t. $$
最后,我们使用$\Delta\boldsymbol{x}_t$来记录自变量变化量$\boldsymbol{g}'_t$按元素平方的指数加权移动平均:
$$\Delta\boldsymbol{x}t \leftarrow \rho \Delta\boldsymbol{x}{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. $$
可以看到,如不考虑$\epsilon$的影响,AdaDelta算法跟RMSProp算法的不同之处在于使用$\sqrt{\Delta\boldsymbol{x}_{t-1}}$来替代学习率$\eta$。
AdaDelta算法需要对每个自变量维护两个状态变量,即$\boldsymbol{s}_t$和$\Delta\boldsymbol{x}_t$。我们按AdaDelta算法中的公式实现该算法。
%matplotlib inline
import tensorflow as tf
import sys
import numpy as np
sys.path.append("..")
import d2lzh_tensorflow2 as d2l
features, labels = d2l.get_data_ch7()
def init_adadelta_states():
s_w, s_b = np.zeros((features.shape[1], 1), dtype=float), np.zeros(1, dtype=float)
delta_w, delta_b = np.zeros((features.shape[1], 1), dtype=float), np.zeros(1, dtype=float)
return ((s_w, delta_w), (s_b, delta_b))
def adadelta(params, states, hyperparams,grads):
rho, eps,i = hyperparams['rho'], 1e-5, 0
for p, (s, delta) in zip(params, states):
s[:] = rho * s + (1 - rho) * (grads[i]**2)
g = grads[i] * np.sqrt((delta + eps) / (s + eps))
p.assign_sub(g)
delta[:] = rho * delta + (1 - rho) * g * g
i+=1
使用超参数$\rho=0.9$来训练模型。
d2l.train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features, labels)
输出:
loss: 0.245219, 1.477930 sec per epoch
通过名称为Adadelta
的优化器方法,我们便可使用Tensorflow2提供的AdaDelta算法。它的超参数可以通过rho
来指定。
from tensorflow import keras
trainer = keras.optimizers.Adadelta(learning_rate=0.01,rho=0.9)
d2l.train_tensorflow2_ch7(trainer, {'rho': 0.9}, features, labels)
输出:
loss: 1.403729, 1.309982 sec per epoch
- AdaDelta算法没有学习率超参数,它通过使用有关自变量更新量平方的指数加权移动平均的项来替代RMSProp算法中的学习率。
[1] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
注:除代码外本节与原书此节基本相同,原书传送门