forked from shap/shap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
125 lines (110 loc) · 4.82 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext as _build_ext
import os
import re
import codecs
import platform
from distutils.sysconfig import get_config_var
from distutils.version import LooseVersion
import sys
# to publish use:
# > python setup.py sdist bdist_wheel upload
# which depends on ~/.pypirc
# This is copied from @robbuckley's fix for Panda's
# For mac, ensure extensions are built for macos 10.9 when compiling on a
# 10.9 system or above, overriding distuitls behavior which is to target
# the version that python was built for. This may be overridden by setting
# MACOSX_DEPLOYMENT_TARGET before calling setup.py
if sys.platform == 'darwin':
if 'MACOSX_DEPLOYMENT_TARGET' not in os.environ:
current_system = LooseVersion(platform.mac_ver()[0])
python_target = LooseVersion(get_config_var('MACOSX_DEPLOYMENT_TARGET'))
if python_target < '10.9' and current_system >= '10.9':
os.environ['MACOSX_DEPLOYMENT_TARGET'] = '10.9'
here = os.path.abspath(os.path.dirname(__file__))
def read(*parts):
with codecs.open(os.path.join(here, *parts), 'r') as fp:
return fp.read()
def find_version(*file_paths):
version_file = read(*file_paths)
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
# Extend the default build_ext class to bootstrap numpy installation
# that are needed to build C extensions.
# see https://stackoverflow.com/questions/19919905/how-to-bootstrap-numpy-installation-in-setup-py
class build_ext(_build_ext):
def finalize_options(self):
_build_ext.finalize_options(self)
if isinstance(__builtins__, dict):
__builtins__["__NUMPY_SETUP__"] = False
else:
setattr(__builtins__, "__NUMPY_SETUP__", False)
import numpy
print("numpy.get_include()", numpy.get_include())
self.include_dirs.append(numpy.get_include())
def run_setup(with_binary=True, test_xgboost=True, test_lightgbm=True):
ext_modules = []
if with_binary:
ext_modules.append(
Extension('shap._cext', sources=['shap/_cext.cc'])
)
if test_xgboost and test_lightgbm:
tests_require = ['nose', 'xgboost', 'lightgbm']
elif test_xgboost:
tests_require = ['nose', 'xgboost']
elif test_lightgbm:
tests_require = ['nose', 'lightgbm']
else:
tests_require = ['nose']
setup(
name='shap',
version=find_version("shap", "__init__.py"),
description='A unified approach to explain the output of any machine learning model.',
long_description="SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of " + \
"any machine learning model. SHAP connects game theory with local explanations, uniting " + \
"several previous methods and representing the only possible consistent and locally accurate " + \
"additive feature attribution method based on expectations.",
long_description_content_type="text/markdown",
url='http://github.com/slundberg/shap',
author='Scott Lundberg',
author_email='[email protected]',
license='MIT',
packages=[
'shap', 'shap.explainers', 'shap.explainers.other', 'shap.explainers.deep',
'shap.plots', 'shap.benchmark'
],
package_data={'shap': ['plots/resources/*', 'tree_shap.h']},
cmdclass={'build_ext': build_ext},
setup_requires=['numpy'],
install_requires=['numpy', 'scipy', 'scikit-learn', 'matplotlib', 'pandas', 'tqdm', 'ipython', 'scikit-image'],
test_suite='nose.collector',
tests_require=tests_require,
ext_modules=ext_modules,
zip_safe=False
)
def try_run_setup(**kwargs):
""" Fails gracefully when various install steps don't work.
"""
try:
run_setup(**kwargs)
except Exception as e:
print(str(e))
if "xgboost" in str(e).lower():
kwargs["test_xgboost"] = False
print("Couldn't install XGBoost for testing!")
try_run_setup(**kwargs)
elif "lightgbm" in str(e).lower():
kwargs["test_lightgbm"] = False
print("Couldn't install LightGBM for testing!")
try_run_setup(**kwargs)
elif kwargs["with_binary"]:
kwargs["with_binary"] = False
print("WARNING: The C extension could not be compiled, sklearn tree models not supported.")
try_run_setup(**kwargs)
else:
print("ERROR: Failed to build!")
# we seem to need this import guard for appveyor
if __name__ == "__main__":
try_run_setup(with_binary=True, test_xgboost=True, test_lightgbm=True)