-
Notifications
You must be signed in to change notification settings - Fork 0
/
uncover_gen1_parrot_phisfhfixzred_params.py
304 lines (252 loc) · 9.69 KB
/
uncover_gen1_parrot_phisfhfixzred_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import time, sys, os
import numpy as np
import numpy.ma as ma
from astropy.table import Table
from astropy import units as u
import sedpy
import prospect
from prospect.fitting import fit_model
from prospect.sources import FastStepBasis
from prospect.models.sedmodel import PolySpecModel
import dynesty
import utils as ut_cwd
import mu_from_maps as lens_mu
import emulator as Emu
pdir = ut_cwd.data_dir(data='pirate')
multiemul_file = os.path.join(pdir, "parrot_v4_obsphot_512n_5l_24s_00z24.npy")
# - Parser with default arguments -
parser = prospect.prospect_args.get_parser()
parser.add_argument('--catalog', type=str, default="zspec_UNCOVER_v5.0.1_LW_SUPER_CATALOG.fits")
parser.add_argument('--idx0', type=int, default=0,
help="Range of galaxies to fit, from idx0 to idx1-1; zero-index row number of the catalog.")
parser.add_argument('--idx1', type=int, default=1,
help="Range of galaxies to fit, from idx0 to idx1-1; zero-index row number of the catalog.")
parser.add_argument('--outdir', type=str, default='chains_parrot_zspec/', help="Output folder name.")
parser.add_argument('--dyn', type=int, default=0,
help="If 0, std run; if 1, quick dynesty run; if 2, debug, max=1100")
args = parser.parse_args()
catalog_file = args.catalog
run_params = vars(args)
run_params.update({
'free_gas_logu': False, # parrot is trained with fixed gas_logu
'verbose': True,
'dyn': args.dyn,
'outdir': ut_cwd.data_dir('cwd')+args.outdir,
'nofork': True,
# dynesty params
'dynesty': True,
'nested_maxcall': None,
'nested_maxcall_init': None,
'nested_maxiter': None,
'nested_maxbatch': None, # maximum number of dynamic patches
'nested_bound': 'multi', # bounding method
'nested_sample': 'rwalk', # sampling method
#'nested_walks': 50, # MC walks
'nested_nlive_batch': 400, # size of live point "batches"
'nested_nlive_init': 1600, # number of initial live points
'nested_weight_kwargs': {'pfrac': 1.0}, # weight posterior over evidence by 100%
'nested_dlogz_init': 0.01,
'nested_target_n_effective': 20000,
# Model info - not much of this is actually needed
'zcontinuous': 2,
'compute_vega_mags': False,
'initial_disp':0.1,
'interp_type': 'logarithmic',
'nbins_sfh': 7,
'sigma': 0.3,
'df': 2,
'agelims': [0.0,7.4772,8.0,8.5,9.0,9.5,9.8,10.0]
})
if run_params['dyn'] == 1:
# quick dynesty fits, for testing purpose
run_params.update({
'nested_nlive_init': 800,
# 'nested_dlogz_init': 0.1,
'nested_target_n_effective': 10000,
'nested_maxcall': 500000,
'nested_maxcall_init': 500000,
})
if run_params['dyn'] == 2:
# debug
run_params.update({
'nested_maxcall': 1100,
'nested_maxcall_init': 1100,
})
run_params["param_file"] = __file__
if not run_params['outdir'].endswith('/'):
run_params['outdir'] = run_params['outdir'] + '/'
if not os.path.exists(run_params['outdir']):
os.makedirs(run_params['outdir'])
print("new directory created:", run_params['outdir'])
print(run_params)
mdir = ut_cwd.data_dir('gen1') + 'phot_catalog/'
cat = Table.read(mdir+catalog_file)
if 'f_alma' in cat.colnames:
alma = True
else:
alma = False
if 'f_f480m' in cat.colnames:
mb = True
else:
mb = False
filter_dict = ut_cwd.filter_dictionary(mb=mb, alma=alma)
filts = list(filter_dict.keys())
filternames = list(filter_dict.values())
def load_obs(idx=None, err_floor=0.05, **extras):
'''
idx: obj idx in the catalog
'''
from prospect.utils.obsutils import fix_obs
flux = ut_cwd.get_fnu_maggies(idx, cat, filts)
unc = ut_cwd.get_enu_maggies(idx, cat, filts)
obs = {}
obs["filters"] = sedpy.observate.load_filters(filternames)
obs["wave_effective"] = np.array([f.wave_effective for f in obs["filters"]])
obs["maggies"] = flux
obs["maggies_unc"] = unc
# define photometric mask
# mask out fluxes with negative errors, and high-confidence negative flux
phot_mask = (unc > 0) & (np.isfinite(flux))
_mask = np.ones_like(unc, dtype=bool)
for k in range(len(flux)):
if unc[k] > 0:
if flux[k] < 0 and flux[k] + 5*unc[k] < 0:
_mask[k] = False
phot_mask &= _mask
obs['phot_mask'] = phot_mask
# impose minimum error floor
obs['maggies_unc'] = np.clip(obs['maggies_unc'], a_min=obs['maggies']*err_floor, a_max=None)
obs["wavelength"] = None
obs["spectrum"] = None
obs['unc'] = None
obs['mask'] = None
# other useful info
obs['objid'] = cat['id'][idx]
obs['catalog'] = catalog_file
obs = fix_obs(obs)
return obs
def build_model(obs=None, emulfp=multiemul_file, **extras):
import params_prosp_parrot as pfile
model_params, fit_order = pfile.params_parrot_phisfhfixzred(obs=obs)
return Emu.EmulatorBeta(model_params, fp=emulfp, obs=obs, param_order=fit_order)
def load_sps(**extras):
return None
# ---------------- lensing
from copy import deepcopy
from prospect.likelihood import lnlike_spec, lnlike_phot, chi_spec, chi_phot, write_log
def lnprobfn(theta, model=None, obs=None, sps=None, noise=(None, None),
residuals=False, nested=False, negative=False, verbose=False):
_obs = deepcopy(obs)
mu = lens_mu.scale_mu(zred=theta[0], px=obs['x_lensmap'], py=obs['y_lensmap'], verbose=verbose)
if residuals:
lnnull = np.zeros(_obs["ndof"]) - 1e18 # np.infty
#lnnull = -np.infty
else:
lnnull = -np.infty
# --- Calculate prior probability and exit if not within prior ---
lnp_prior = model.prior_product(theta, nested=nested)
if not np.isfinite(lnp_prior):
return lnnull
# --- Update Noise Model ---
spec_noise, phot_noise = noise
vectors, sigma_spec = {}, None
model.set_parameters(theta)
if spec_noise is not None:
spec_noise.update(**model.params)
vectors.update({"unc": _obs.get('unc', None)})
sigma_spec = spec_noise.construct_covariance(**vectors)
if phot_noise is not None:
phot_noise.update(**model.params)
vectors.update({'phot_unc': _obs.get('maggies_unc', None),
'phot': _obs.get('maggies', None)})
# --- Generate mean model ---
try:
t1 = time.time()
spec, phot, x = model.predict(theta, _obs, sps=sps, sigma_spec=sigma_spec)
spec *= mu
phot *= mu
d1 = time.time() - t1
except(ValueError):
return lnnull
except:
print("There was an error during the likelihood call at parameters {}".format(theta))
raise
# --- Optionally return chi vectors for least-squares ---
# note this does not include priors!
if residuals:
chispec = chi_spec(spec, _obs)
chiphot = chi_phot(phot, _obs)
return np.concatenate([chispec, chiphot])
# --- Mixture Model ---
f_outlier_spec = model.params.get('f_outlier_spec', 0.0)
if (f_outlier_spec != 0.0):
sigma_outlier_spec = model.params.get('nsigma_outlier_spec', 10)
vectors.update({'nsigma_outlier_spec': sigma_outlier_spec})
f_outlier_phot = model.params.get('f_outlier_phot', 0.0)
if (f_outlier_phot != 0.0):
sigma_outlier_phot = model.params.get('nsigma_outlier_phot', 10)
vectors.update({'nsigma_outlier_phot': sigma_outlier_phot})
# --- Emission Lines ---
# --- Calculate likelihoods ---
t1 = time.time()
lnp_spec = lnlike_spec(spec, obs=_obs,
f_outlier_spec=f_outlier_spec,
spec_noise=spec_noise,
**vectors)
lnp_phot = lnlike_phot(phot, obs=_obs,
f_outlier_phot=f_outlier_phot,
phot_noise=phot_noise, **vectors)
lnp_eline = getattr(model, '_ln_eline_penalty', 0.0)
d2 = time.time() - t1
if verbose:
write_log(theta, lnp_prior, lnp_spec, lnp_phot, d1, d2)
lnp = lnp_prior + lnp_phot + lnp_spec + lnp_eline
if negative:
lnp *= -1
return lnp
# ---------------- fit !
badobs_ids_list = []
for ifit in np.arange(args.idx0, args.idx1, 1):
# run on the full catalog
objid = cat['id'][ifit]
print("\nFitting {}".format(objid))
print("------------------\n")
run_params['idx'] = ifit # choose a galaxy
_can_fit = False
try:
obs = load_obs(**run_params)
_can_fit = True
except(AssertionError):
# all NaNs, etc.
_can_fit = False
badobs_ids_list.append(objid)
print('no phot')
if _can_fit:
obs['x_pixel'] = 0; obs['y_pixel'] = 0
obs['ra'] = cat[ifit]['ra']; obs['dec'] = cat[ifit]['dec']
ra = obs['ra']*u.deg
dec = obs['dec']*u.deg
obs['x_lensmap'], obs['y_lensmap'] = lens_mu.xy_in_kappa_and_gamma(ra, dec)
obs['zspec'] = cat[ifit]['z_spec']
model = build_model(obs=obs, **run_params)
sps = load_sps(**run_params)
print(obs)
print(model)
ts = time.strftime("%y%b%d-%H.%M", time.localtime())
hfile = os.path.join(run_params['outdir'], "id_{0}_mcmc_phisfhzfixed.h5".format(objid))
if obs['x_lensmap'] < 0 or obs['y_lensmap'] < 0:
# outside lens model FoV
output = fit_model(obs, model, sps, **run_params)
else:
output = fit_model(obs, model, sps, lnprobfn=lnprobfn, **run_params)
print('done in {0}s'.format(output["sampling"][1]))
prospect.io.write_results.write_hdf5(hfile, run_params, model, obs,
output["sampling"][0], output["optimization"][0],
tsample=output["sampling"][1],
toptimize=output["optimization"][1],
sps=sps, write_model_params=False)
try:
hfile.close()
except(AttributeError):
pass
print('Finished. Saved to {}'.format(hfile))