-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
562 lines (443 loc) · 22.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import os
import numpy as np
import torch
from torch import Tensor
from pathlib import Path
from typing import List, Optional, Sequence, Union, Any, Callable
from torchvision.datasets.folder import default_loader
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader, Dataset, TensorDataset
from torchvision import transforms
from torchvision.datasets import CelebA
import zipfile
def portion_data(raw_data, data_portion, time_steps, shuffle):
if data_portion == 1.0 and time_steps == 49:
return raw_data
if shuffle:
np.random.shuffle(raw_data)
num_trajs = raw_data.shape[0]
num_times = raw_data.shape[0]
return raw_data[:int(num_trajs * data_portion), :int(time_steps), :, :]
def slides_t0(raw_data, lag_time, slide=1):
t0 = np.concatenate([d[j::lag_time][:-1] for d in raw_data for j in range(slide)], axis=0)
return t0
def slides_t1(raw_data, lag_time, slide=1):
t1 = np.concatenate([d[j::lag_time][1:] for d in raw_data for j in range(slide)], axis=0)
return t1
def load_phy_edges(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
if args.suffix != "charged":
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
else:
root_str = args.data_path[::-1].split('/', 1)[1][::-1]
edges = np.load(root_str + 'edges_train_' + keep_str)
if args.suffix != "charged":
edges[edges > 0] = 1
edges = np.reshape(edges, (-1))
return edges
def load_netsims_edges(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
edges = np.load(root_str + 'edges_train_' + keep_str)
edges[edges > 0] = 1
edges = np.reshape(edges, (-1))
return edges
def load_biological_edges(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
edges = np.load(root_str + keep_str)
edges[edges > 0] = 1
edges = np.reshape(edges, (-1))
return edges
def load_edges(args):
print("In load_edges.", args.suffix)
if args.suffix in ['LI', 'LL', 'CY', 'BF', 'TF', 'BF-CV']:
edges = load_biological_edges(args)
elif args.suffix == "springs" or "charged":
edges = load_phy_edges(args)
elif args.suffix == "netsims":
edges = load_netsims_edges(args)
else:
raise ValueError("Dataset not implemented yet.")
return edges
def load_customized_springs_data(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
if args.suffix != "charged":
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
else:
root_str = args.data_path[::-1].split('/', 1)[1][::-1]
loc_train = np.load(root_str + 'loc_train_' + keep_str)
vel_train = np.load(root_str + 'vel_train_' + keep_str)
edges = np.load(root_str + 'edges_train_' + keep_str)
if args.suffix != "charged":
edges[edges > 0] = 1
loc_valid = np.load(root_str + 'loc_valid_' + keep_str)
vel_valid = np.load(root_str + 'vel_valid_' + keep_str)
loc_test = np.load(root_str + 'loc_test_' + keep_str)
vel_test = np.load(root_str + 'vel_test_' + keep_str)
loc_train = portion_data(loc_train, args.b_portion, args.b_time_steps, args.b_shuffle)
vel_train = portion_data(vel_train, args.b_portion, args.b_time_steps, args.b_shuffle)
loc_valid = portion_data(loc_valid, args.b_portion, args.b_time_steps, args.b_shuffle)
vel_valid = portion_data(vel_valid, args.b_portion, args.b_time_steps, args.b_shuffle)
print("We have {} training simulations, {} validation simulations, and {} test simulations.".format(
loc_train.shape[0], loc_valid.shape[0], loc_test.shape[0]))
loc_max = loc_train.max()
loc_min = loc_train.min()
vel_max = vel_train.max()
vel_min = vel_train.min()
loc_train = (loc_train - loc_min) * 2 / (loc_max - loc_min) - 1
vel_train = (vel_train - vel_min) * 2 / (vel_max - vel_min) - 1
loc_valid = (loc_valid - loc_min) * 2 / (loc_max - loc_min) - 1
vel_valid = (vel_valid - vel_min) * 2 / (vel_max - vel_min) - 1
loc_test = (loc_test - loc_min) * 2 / (loc_max - loc_min) - 1
vel_test = (vel_test - vel_min) * 2 / (vel_max - vel_min) - 1
# Reshape to: [num_sims, num_timesteps, num_nodes, num_dims]
loc_train = np.transpose(loc_train, [0, 3, 1, 2])
vel_train = np.transpose(vel_train, [0, 3, 1, 2])
feat_train = np.concatenate([loc_train, vel_train], axis=3)
loc_valid = np.transpose(loc_valid, [0, 3, 1, 2])
vel_valid = np.transpose(vel_valid, [0, 3, 1, 2])
feat_valid = np.concatenate([loc_valid, vel_valid], axis=3)
loc_test = np.transpose(loc_test, [0, 3, 1, 2])
vel_test = np.transpose(vel_test, [0, 3, 1, 2])
feat_test = np.concatenate([loc_test, vel_test], axis=3)
feat_train = np.reshape(feat_train, (-1, feat_train.shape[2], feat_train.shape[3]))
feat_train_t0 = torch.FloatTensor(slides_t0(feat_train, args.lag_time, args.slide))
feat_train_t1 = torch.FloatTensor(slides_t1(feat_train, args.lag_time, args.slide))
train_data = TensorDataset(feat_train_t0, feat_train_t1)
feat_valid = np.reshape(feat_valid, (-1, feat_valid.shape[2], feat_valid.shape[3]))
feat_valid_t0 = torch.FloatTensor(slides_t0(feat_valid, args.lag_time, args.slide))
feat_valid_t1 = torch.FloatTensor(slides_t1(feat_valid, args.lag_time, args.slide))
valid_data = TensorDataset(feat_valid_t0, feat_valid_t1)
feat_test = np.reshape(feat_test, (-1, feat_test.shape[2], feat_test.shape[3]))
feat_test_t0 = torch.FloatTensor(slides_t0(feat_test, args.lag_time, args.slide))
feat_test_t1 = torch.FloatTensor(slides_t1(feat_test, args.lag_time, args.slide))
test_data = TensorDataset(feat_test_t0, feat_test_t1)
# Exclude self edges: discarded
# off_diag_idx = np.ravel_multi_index(
# np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)),
# [num_atoms, num_atoms])
# edges_train = edges_train[:, off_diag_idx]
# edges_valid = edges_valid[:, off_diag_idx]
# edges_test = edges_test[:, off_diag_idx]
edges = np.reshape(edges, (-1)) # Flattened into the shape (num_nodes ** 2), np array.
# train_data_loader = DataLoader(train_data, batch_size=args.batch_size)
# valid_data_loader = DataLoader(valid_data, batch_size=args.batch_size)
# test_data_loader = DataLoader(test_data, batch_size=args.batch_size)
return train_data, valid_data, test_data, edges #, loc_max, loc_min, vel_max, vel_min
def load_customized_netsims_data(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
bold_train = np.load(root_str + 'bold_train_' + keep_str)
edges = np.load(root_str + 'edges_train_' + keep_str)
edges[edges > 0] = 1
bold_valid = np.load(root_str + 'bold_valid_' + keep_str)
bold_test = np.load(root_str + 'bold_test_' + keep_str)
bold_train = portion_data(bold_train, args.b_portion, args.b_time_steps, args.b_shuffle)
bold_valid = portion_data(bold_valid, args.b_portion, args.b_time_steps, args.b_shuffle)
bold_max = bold_train.max()
bold_min = bold_train.min()
bold_train = (bold_train - bold_min) * 2 / (bold_max - bold_min) - 1
bold_valid = (bold_valid - bold_min) * 2 / (bold_max - bold_min) - 1
bold_test = (bold_test - bold_min) * 2 / (bold_max - bold_min) - 1
# Reshape to: [num_sims, num_timesteps, num_nodes, num_dims]
feat_train = np.transpose(bold_train, [0, 3, 1, 2])
feat_train = np.reshape(feat_train, (-1, feat_train.shape[2], feat_train.shape[3]))
feat_train_t0 = torch.FloatTensor(slides_t0(feat_train, args.lag_time, args.slide))
feat_train_t1 = torch.FloatTensor(slides_t1(feat_train, args.lag_time, args.slide))
train_data = TensorDataset(feat_train_t0, feat_train_t1)
feat_valid = np.transpose(bold_valid, [0, 3, 1, 2])
feat_valid = np.reshape(feat_valid, (-1, feat_valid.shape[2], feat_valid.shape[3]))
feat_valid_t0 = torch.FloatTensor(slides_t0(feat_valid, args.lag_time, args.slide))
feat_valid_t1 = torch.FloatTensor(slides_t1(feat_valid, args.lag_time, args.slide))
valid_data = TensorDataset(feat_valid_t0, feat_valid_t1)
feat_test = np.transpose(bold_test, [0, 3, 1, 2])
feat_test = np.reshape(feat_test, (-1, feat_test.shape[2], feat_test.shape[3]))
feat_test_t0 = torch.FloatTensor(slides_t0(feat_test, args.lag_time, args.slide))
feat_test_t1 = torch.FloatTensor(slides_t1(feat_test, args.lag_time, args.slide))
test_data = TensorDataset(feat_test_t0, feat_test_t1)
edges = np.reshape(edges, (-1)) # Flattened into the shape (num_nodes ** 2), np array.
# Exclude self edges: discarded
# off_diag_idx = np.ravel_multi_index(
# np.where(np.ones((num_atoms, num_atoms)) - np.eye(num_atoms)),
# [num_atoms, num_atoms])
# edges_train = edges_train[:, off_diag_idx]
# edges_valid = edges_valid[:, off_diag_idx]
# edges_test = edges_test[:, off_diag_idx]
# train_data_loader = DataLoader(train_data, batch_size=args.batch_size)
# valid_data_loader = DataLoader(valid_data, batch_size=args.batch_size)
# test_data_loader = DataLoader(test_data, batch_size=args.batch_size)
return train_data, valid_data, test_data, edges # bold_max, bold_min, bold_max, bold_min
def load_data_biological(args):
keep_str = args.data_path.split('/')[-1].split('_', 2)[-1]
root_str = args.data_path[::-1].split('/', 1)[1][::-1] + '/'
train_traj = np.load(root_str + 'train.npy')
# shape:[num_simulations, num_genes, time_steps]
n_train = train_traj.shape[0]
train_traj = np.transpose(train_traj, [0, 2, 1]) # change to [num_simulations, timesteps, num_genes]
train_traj = train_traj[..., np.newaxis] # shape: [num_sim, timesteps, num_genes, dimension]
train_traj = np.transpose(train_traj, [0, 1, 3, 2]) # shape: [num_sim, timesteps, dimension, num_genes]
edges = np.load(root_str + keep_str)
valid_traj = np.load(root_str + 'valid.npy')
n_valid = valid_traj.shape[0]
valid_traj = np.transpose(valid_traj, [0, 2, 1]) # change to [num_simulations, timesteps, num_genes]
valid_traj = valid_traj[..., np.newaxis] # shape: [num_sim, timesteps, num_genes, dimension]
valid_traj = np.transpose(valid_traj, [0, 1, 3, 2])
test_traj = np.load(root_str + 'test.npy')
n_test = test_traj.shape[0]
test_traj = np.transpose(test_traj, [0, 2, 1]) # change to [num_simulations, timesteps, num_genes]
test_traj = test_traj[..., np.newaxis] # shape: [num_sim, timesteps, num_genes, dimension]
test_traj = np.transpose(test_traj, [0, 1, 3, 2])
print("We have {} training simulations, {} validation simulations, and {} test simulations.".format(
train_traj.shape[0], valid_traj.shape[0], test_traj.shape[0]))
loc_max = train_traj.max()
loc_min = train_traj.min()
norm_train = (train_traj - loc_min) * 2 / (loc_max - loc_min) - 1
norm_valid = (valid_traj - loc_min) * 2 / (loc_max - loc_min) - 1
norm_test = (test_traj - loc_min) * 2 / (loc_max - loc_min) - 1
# Reshape to: [num_sims, num_genes, num_timesteps, num_dims]
# NOTE: added normalization on Jun.29
# feat_train = np.transpose(train_traj, [0, 3, 1, 2]) # without normalization
feat_train = np.transpose(norm_train, [0, 3, 1, 2])
# feat_valid = np.transpose(valid_traj, [0, 3, 1, 2]) # without normalization
feat_valid = np.transpose(norm_valid, [0, 3, 1, 2])
# feat_test = np.transpose(test_traj, [0, 3, 1, 2]) # without normalization
feat_test = np.transpose(norm_test, [0, 3, 1, 2])
feat_train_t0 = torch.FloatTensor(slides_t0(feat_train, args.lag_time, args.slide))
feat_train_t1 = torch.FloatTensor(slides_t1(feat_train, args.lag_time, args.slide))
train_data = TensorDataset(feat_train_t0, feat_train_t1)
feat_valid = np.reshape(feat_valid, (-1, feat_valid.shape[2], feat_valid.shape[3]))
feat_valid_t0 = torch.FloatTensor(slides_t0(feat_valid, args.lag_time, args.slide))
feat_valid_t1 = torch.FloatTensor(slides_t1(feat_valid, args.lag_time, args.slide))
valid_data = TensorDataset(feat_valid_t0, feat_valid_t1)
feat_test = np.reshape(feat_test, (-1, feat_test.shape[2], feat_test.shape[3]))
feat_test_t0 = torch.FloatTensor(slides_t0(feat_test, args.lag_time, args.slide))
feat_test_t1 = torch.FloatTensor(slides_t1(feat_test, args.lag_time, args.slide))
test_data = TensorDataset(feat_test_t0, feat_test_t1)
edges = np.reshape(edges, (-1))
return train_data, valid_data, test_data, edges #, loc_max, loc_min, vel_max, vel_min
# Add your custom dataset class here
class MyDataset(Dataset):
def __init__(self):
pass
def __len__(self):
pass
def __getitem__(self, idx):
pass
class MyCelebA(CelebA):
"""
A work-around to address issues with pytorch's celebA dataset class.
Download and Extract
URL : https://drive.google.com/file/d/1m8-EBPgi5MRubrm6iQjafK2QMHDBMSfJ/view?usp=sharing
"""
def _check_integrity(self) -> bool:
return True
class OxfordPets(Dataset):
"""
URL = https://www.robots.ox.ac.uk/~vgg/data/pets/
"""
def __init__(self,
data_path: str,
split: str,
transform: Callable,
**kwargs):
self.data_dir = Path(data_path) / "OxfordPets"
self.transforms = transform
imgs = sorted([f for f in self.data_dir.iterdir() if f.suffix == '.jpg'])
self.imgs = imgs[:int(len(imgs) * 0.75)] if split == "train" else imgs[int(len(imgs) * 0.75):]
def __len__(self):
return len(self.imgs)
def __getitem__(self, idx):
img = default_loader(self.imgs[idx])
if self.transforms is not None:
img = self.transforms(img)
return img, 0.0 # dummy datat to prevent breaking
class VAEDataset(LightningDataModule):
"""
PyTorch Lightning data module
Args:
data_dir: root directory of your dataset.
train_batch_size: the batch size to use during training.
val_batch_size: the batch size to use during validation.
patch_size: the size of the crop to take from the original images.
num_workers: the number of parallel workers to create to load data
items (see PyTorch's Dataloader documentation for more details).
pin_memory: whether prepared items should be loaded into pinned memory
or not. This can improve performance on GPUs.
"""
def __init__(
self,
data_path: str,
train_batch_size: int = 8,
val_batch_size: int = 8,
patch_size: Union[int, Sequence[int]] = (256, 256),
num_workers: int = 0,
pin_memory: bool = False,
**kwargs,
):
super().__init__()
self.data_dir = data_path
self.train_batch_size = train_batch_size
self.val_batch_size = val_batch_size
self.patch_size = patch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def prepare_data(self) -> None:
pass
def setup(self, stage: Optional[str] = None) -> None:
# ========================= OxfordPets Dataset =========================
# train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# val_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# self.train_dataset = OxfordPets(
# self.data_dir,
# split='train',
# transform=train_transforms,
# )
# self.val_dataset = OxfordPets(
# self.data_dir,
# split='val',
# transform=val_transforms,
# )
# ========================= CelebA Dataset =========================
train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.CenterCrop(148),
transforms.Resize(self.patch_size),
transforms.ToTensor(), ])
val_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.CenterCrop(148),
transforms.Resize(self.patch_size),
transforms.ToTensor(), ])
self.train_dataset = MyCelebA(
self.data_dir,
split='train',
transform=train_transforms,
download=False,
)
# Replace CelebA with your dataset
self.val_dataset = MyCelebA(
self.data_dir,
split='test',
transform=val_transforms,
download=False,
)
# ===============================================================
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.train_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)
def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.val_dataset,
batch_size=self.val_batch_size,
num_workers=self.num_workers,
shuffle=False,
pin_memory=self.pin_memory,
)
def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.val_dataset,
batch_size=144,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)
class VDEDataset(LightningDataModule):
"""
PyTorch Lightning data module
Args:
data_dir: root directory of your dataset.
train_batch_size: the batch size to use during training.
val_batch_size: the batch size to use during validation.
patch_size: the size of the crop to take from the original images.
num_workers: the number of parallel workers to create to load data
items (see PyTorch's Dataloader documentation for more details).
pin_memory: whether prepared items should be loaded into pinned memory
or not. This can improve performance on GPUs.
"""
def __init__(
self,
args,
train_batch_size: int = 8,
val_batch_size: int = 8,
num_workers: int = 28,
pin_memory: bool = False,
**kwargs,
):
super().__init__()
self.args = args
self.train_batch_size = args.batch_size
self.val_batch_size = args.batch_size
self.test_batch_size = args.batch_size
self.num_workers = num_workers
self.pin_memory = pin_memory
def prepare_data(self) -> None:
if self.args.suffix == "springs":
self.train_dataset, self.val_dataset, self.test_dataset, self.edges = load_customized_springs_data(self.args)
elif self.args.suffix == "netsims":
self.train_dataset, self.val_dataset, self.test_dataset, self.edges = load_customized_netsims_data(self.args)
elif self.args.suffix in ['LI', 'LL', 'CY', 'BF', 'TF', 'BF-CV']:
self.train_dataset, self.val_dataset, self.test_dataset, self.edges = load_data_biological(self.args)
else:
raise ValueError("Dataset not implemented yet.")
def setup(self, stage: Optional[str] = None) -> None:
# ========================= OxfordPets Dataset =========================
# train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# val_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
# transforms.CenterCrop(self.patch_size),
# # transforms.Resize(self.patch_size),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])
# self.train_dataset = OxfordPets(
# self.data_dir,
# split='train',
# transform=train_transforms,
# )
# self.val_dataset = OxfordPets(
# self.data_dir,
# split='val',
# transform=val_transforms,
# )
pass
# ===============================================================
def train_dataloader(self) -> DataLoader:
return DataLoader(
self.train_dataset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)
def val_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.val_dataset,
batch_size=self.val_batch_size,
num_workers=self.num_workers,
shuffle=False,
pin_memory=self.pin_memory,
)
def test_dataloader(self) -> Union[DataLoader, List[DataLoader]]:
return DataLoader(
self.test_dataset,
batch_size=self.test_batch_size,
num_workers=self.num_workers,
shuffle=True,
pin_memory=self.pin_memory,
)
def get_edges(self):
return self.edges