diff --git a/yolov8/src/model.cpp b/yolov8/src/model.cpp index 56c5d6e7..5e85a7a5 100644 --- a/yolov8/src/model.cpp +++ b/yolov8/src/model.cpp @@ -739,9 +739,6 @@ nvinfer1::IHostMemory* buildEngineYolov8DetP2(nvinfer1::IBuilder* builder, nvinf int base_in_channel = 64; int base_out_channel = (gw == 0.25) ? std::max(64, std::min(kNumClass, 100)) : get_width(128, gw, max_channels); - std::cout << "base_in_channel is : " << base_in_channel << std::endl; - std::cout << "base_out_channel is : " << base_out_channel << std::endl; - // output0 nvinfer1::IElementWiseLayer* conv28_cv2_0_0 = convBnSiLU(network, weightMap, *conv18->getOutput(0), base_in_channel, 3, 1, 1, "model.28.cv2.0.0"); @@ -838,8 +835,6 @@ nvinfer1::IHostMemory* buildEngineYolov8DetP2(nvinfer1::IBuilder* builder, nvinf int stridesLength = sizeof(strides) / sizeof(int); // P2 processing steps (remains unchanged) - std::cout << "kNumClass is : " << kNumClass << std::endl; - std::cout << "kInputH is : " << kInputH << std::endl; nvinfer1::IShuffleLayer* shuffle28_0 = network->addShuffle(*cat28_0->getOutput(0)); shuffle28_0->setReshapeDimensions(nvinfer1::Dims2{64 + kNumClass, (kInputH / strides[0]) * (kInputW / strides[0])}); nvinfer1::ISliceLayer* split28_0_0 = network->addSlice(