-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
163 lines (154 loc) · 7.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from data import get_data
from utils import get_model
from tqdm.auto import tqdm
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import os
import json
from datetime import datetime
from sklearn.model_selection import StratifiedShuffleSplit
from torch_geometric.data import DataLoader
from config import config
device = config["DEVICE"]
# Data ------------------------------------------------------------------------
train_list, classes_train, test_list, classes_test, classes_dict = \
get_data(config, return_classes_dict=True)
num_classes = len(torch.unique(torch.stack(classes_train)))
train_test_split = {}
train_test_split['TRAIN_MESHES'] = [tr.identity for tr in train_list]
train_test_split['TEST_MESHES'] = [te.identity for te in test_list]
# Model -----------------------------------------------------------------------
net = get_model(name=config["NET_TYPE"],
device=device,
num_classes=num_classes)
train_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
print('\n[MODEL] - There are {} trainable params in the model'.\
format(train_params))
# -----------------------------------------------------------------------------
optimizer = torch.optim.Adam(net.parameters(), lr=config['LEARNING_RATE'])
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=config['STEP_DECAY'],
gamma=config['GAMMA_DECAY'])
# Organize Tensorboard logging ------------------------------------------------
logdir = 'runs/k_fold_{}_{}'.format(datetime.now().strftime('%b%d_%H-%M-%S_yoda'),
config['DATA_DIR'])
writer = SummaryWriter(logdir)
# Saving hyperparameters
with open(os.path.join(logdir,"config.json"), "w") as f:
json.dump(config, f)
# Saving train/test split filenames
with open(os.path.join(logdir, "train_test_split.json"), "w") as tts:
json.dump(train_test_split, tts, indent=4)
# Saving classes dictionary
with open(os.path.join(logdir, "classes_dict.json"), "w") as cd:
json.dump(classes_dict, cd, indent=4)
# Dumping hparams to Tensorboard
writer.add_text("Hyperparams", json.dumps(config), global_step=0)
# and class distributions
writer.add_histogram('Class Distribution/Train',
torch.stack(classes_train),
global_step=0)
writer.add_histogram('Class Distribution/Test',
torch.stack(classes_test),
global_step=0)
os.mkdir(os.path.join(logdir, 'model'))
# -----------------------------------------------------------------------------
kfold = StratifiedShuffleSplit(n_splits=config['NUM_SPLITS'],
train_size=config['FOLD_TRAIN_PCTG'],
random_state=config['RANDOM_SEED'])
num_workers = 4
best_test_acc = 0.
for epoch in range(config['NUM_EPOCHS']):
epoch_train_loss, epoch_train_acc = [], []
epoch_val_loss, epoch_val_acc = [], []
for num_fold, (train_idx, val_idx) in enumerate(kfold.split(train_list,
classes_train)):
train_loader = DataLoader([train_list[i] for i in train_idx],
batch_size=config['BATCH_SIZE'],
shuffle=True, num_workers=num_workers)
val_loader = DataLoader([train_list[i] for i in val_idx],
batch_size=config['BATCH_SIZE'], shuffle=False,
num_workers=num_workers)
train_loss, train_acc = 0., 0.
net.train()
# for data in tqdm(train_loader, desc='Train',
# ncols=100, position=0, leave=True):
for data in train_loader:
# Run an optimization step
optimizer.zero_grad()
out = net(data.to(device))
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
# Accumulate loss and accuracy
with torch.no_grad():
train_loss += loss.item()
pred = torch.argmax(out, dim=1)
train_acc += pred.eq(data.y).sum().item() / data.num_graphs
# Store the training metrics for every fold
train_loss = train_loss / len(train_loader)
train_acc = 100 * train_acc / len(train_loader)
epoch_train_loss.append(train_loss)
epoch_train_acc.append(train_acc)
# Validation step -------------------------------------------------------
# No need for gradients
with torch.no_grad():
val_loss, val_acc = 0., 0.
net.eval()
# for data in tqdm(val_loader, desc='Validation', ncols=100):
for data in val_loader:
out = net(data.to(device))
loss = F.nll_loss(out, data.y)
# Accumulate loss and accuracy
val_loss += loss.item()
pred = torch.argmax(out, dim=1)
val_acc += pred.eq(data.y).sum().item() / data.num_graphs
# Store the validation metrics for every fold
val_loss = val_loss / len(val_loader)
val_acc = 100 * val_acc / len(val_loader)
epoch_val_loss.append(val_loss)
epoch_val_acc.append(val_acc)
# -----------------------------------------------------------------------
if epoch == 0:
# Monitor the classes distribution of every fold
writer.add_histogram('Class Distribution/Train/Fold {}'.\
format(num_fold),
torch.cat([data.y for data in train_loader]),
global_step=0)
writer.add_histogram('Class Distribution/Train/Validation/Fold {}'.\
format(num_fold),
torch.cat([data.y for data in val_loader]),
global_step=0)
with torch.no_grad():
if epoch % 10 == 0:
# Log the model weights for visualization
for name, param in net.named_parameters():
if param.requires_grad:
writer.add_histogram('Model/{}'.format(name), param, epoch)
# Average the train / validation metrics
train_loss = torch.mean(torch.tensor(epoch_train_loss))
train_acc = torch.mean(torch.tensor(epoch_train_acc))
val_loss = torch.mean(torch.tensor(epoch_val_loss))
val_acc = torch.mean(torch.tensor(epoch_val_acc))
if ((epoch+1) % 100 == 0):
print(f'\nEpoch {epoch} - Saving model...')
model_path = os.path.join(logdir, 'model', 'state_dict.pth')
opt_path = os.path.join(logdir, 'model', 'opt_state.pth')
torch.save(net.state_dict(), model_path)
torch.save(optimizer.state_dict(), opt_path)
print('Done.')
# ---------------------------------------------------------------------------
# Log metrics
writer.add_scalar('Train/Accuracy', train_acc, epoch)
writer.add_scalar('Train/Loss', train_loss, epoch)
writer.add_scalar('Validation/Accuracy', val_acc, epoch)
writer.add_scalar('Validation/Loss', val_loss, epoch)
writer.add_scalar('Learning Rate', scheduler.get_last_lr()[0], epoch)
# ---------------------------------------------------------------------------
print('\n[{:03d}/{:03d}] LOSS-------------- ACCURACY'.\
format(epoch, config['NUM_EPOCHS']))
print('[TRAIN] {} {} %'.format(train_loss, train_acc))
print('[VAL] {} {} %'.format(val_loss, val_acc))
# Adjust learning rate
scheduler.step()