-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lstm_test.py
33 lines (24 loc) · 1007 Bytes
/
train_lstm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
from dataloader import Dataloader, Coordinates,split_dfs_by_season
import dotenv
from model import LstmModel
from train_lstm import train_lstm_new
import os
import multiprocessing as mp
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dotenv.load_dotenv()
data = Dataloader("/data",Coordinates(float(os.environ["Lat"]),float(os.environ["Long"]))).load()
seasonal_data = split_dfs_by_season(data)
seasonal_data.normalize_seasons()
seasonal_data_list = [(seasonal_data.summer,"summer"),(seasonal_data.winter,"winter"),(seasonal_data.spring,"spring"),(seasonal_data.autumn,"autumn")]
mp.set_start_method('spawn')
processes = []
for season in seasonal_data_list:
model = LstmModel()
model.to(device)
p = mp.Process(target=train_lstm_new, args=(model,device,season[0],season[1],100,0.0001))
p.start()
processes.append(p)
for p in processes:
p.join()