-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathday_21b.cpp
231 lines (209 loc) · 6.91 KB
/
day_21b.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <limits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <regex>
#include <cassert>
#include <cmath>
// TODO: refactor this.
// Can use a vector instead of a map since the final size is known from before, then no need to run the hasher constantly
// There is probably a better way to predict the final pattern or jump steps,
// for example, cache patterns seen and what they transform into n iterations later
// TODO: Investigate why running this at O3 causes a crash while O0 is fine
struct Coord2D {
int row;
int col;
Coord2D(const int row = 0, const int col = 0) : row(row) , col(col) {}
Coord2D operator + (const Coord2D& c) const {
Coord2D ans;
ans.row = row + c.row;
ans.col = col + c.col;
return ans;
}
bool operator == (const Coord2D& c) const {
return row == c.row && col == c.col;
}
Coord2D operator - (const Coord2D& c) const {
Coord2D ans;
ans.row = row - c.row;
ans.col = col - c.col;
return ans;
}
Coord2D operator += (const Coord2D& c) {
row += c.row;
col += c.col;
return *this;
}
};
struct hasher {
std::size_t operator()(const Coord2D& c) const {
return 1000000 * c.row + c.col;
}
};
void print_pattern(const std::unordered_map<Coord2D, char, hasher>& pattern) {
const int dim = std::sqrt(pattern.size());
for (int row = 0; row < dim; row++) {
for (int col = 0; col < dim; col++) {
std::cout << pattern.at(Coord2D(row,col));
}
std::cout << '\n';
}
std::cout << '\n';
}
int count_on_in_pattern(const std::unordered_map<Coord2D, char, hasher>& pattern) {
const int dim = std::sqrt(pattern.size());
int count = 0;
for (int row = 0; row < dim; row++) {
for (int col = 0; col < dim; col++) {
if(pattern.at(Coord2D(row,col)) == '#') count++;
}
}
return count;
}
std::string pattern_to_string(const std::unordered_map<Coord2D, char, hasher>& map) {
std::string ans = "";
const int n = (map.size() == 4) ? 2 : 3;
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
ans += map.at(Coord2D(row, col));
}
if (row != n - 1) ans += '/';
}
return ans;
}
std::unordered_map<Coord2D, char, hasher> string_to_pattern(const std::string& s) {
std::unordered_map<Coord2D, char, hasher> map;
int n = 0;
if(s.size() == 5) {
n = 2;
} else if(s.size() == 11) {
n = 3;
} else if(s.size() == 19) {
n = 4;
}
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
map[Coord2D(row, col)] = s[row * (n + 1) + col]; // n+1 to include the '/'
}
}
return map;
}
std::unordered_map<Coord2D, char, hasher> rotate_pattern(const std::unordered_map<Coord2D, char, hasher>& map) {
std::unordered_map<Coord2D, char, hasher> ans;
const int n = map.size() == 4 ? 2 :3;
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
ans[Coord2D(row, col)] = map.at(Coord2D(n - col - 1, row));
// std::cout << ans[Coord2D(row, col)];
}
// std::cout << '\n';
}
// std::cout << '\n';
return ans;
}
std::unordered_map<Coord2D, char, hasher> flip_pattern(const std::unordered_map<Coord2D, char, hasher>& map) {
std::unordered_map<Coord2D, char, hasher> ans;
const int n = map.size() == 4 ? 2 :3;
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
ans[Coord2D(n - row - 1, col)] = map.at(Coord2D(row, col));
}
}
return ans;
}
int main(int argc, char* argv[]) {
const std::string input = (argc > 1) ? argv[1] : "../input/day_21_input" ;
std::ifstream file(input);
std::string line;
const std::regex regex_pattern(R"(([#./]+) => ([#./]+))");
std::unordered_map<std::string, std::unordered_map<Coord2D, char, hasher>> rules;
while(std::getline(file, line)) {
std::smatch match;
std::regex_search(line, match, regex_pattern);
const std::string input_str = match[1];
// std::cout << input_str << '\n';
// std::cout << pattern_to_string(string_to_pattern(input_str)) << '\n';
assert(input_str == pattern_to_string(string_to_pattern(input_str)));
const auto output_pattern_str = match[2];
// std::cout << output_pattern_str << '\n';
const auto output_pattern = string_to_pattern(output_pattern_str);
auto pattern = string_to_pattern(input_str);
// rules[pattern_to_string(pattern)] = output_pattern;
// rules[pattern_to_string(flip_pattern(pattern))] = output_pattern;
for (int i = 0; i < 4; i++) {
pattern = rotate_pattern(pattern);
rules[pattern_to_string(pattern)] = output_pattern;
rules[pattern_to_string(flip_pattern(pattern))] = output_pattern;
}
}
// .#.
// ..#
// ###
std::unordered_map<Coord2D, char, hasher> pattern;
std::unordered_map<Coord2D, char, hasher> new_pattern;
pattern[Coord2D(0,0)] = '.';
pattern[Coord2D(0,1)] = '#';
pattern[Coord2D(0,2)] = '.';
pattern[Coord2D(1,0)] = '.';
pattern[Coord2D(1,1)] = '.';
pattern[Coord2D(1,2)] = '#';
pattern[Coord2D(2,0)] = '#';
pattern[Coord2D(2,1)] = '#';
pattern[Coord2D(2,2)] = '#';
int n_parts = 0;
int n = 0;
int iterations = 0;
// Fix (0,0)
for (int iterations = 0; iterations < 18; iterations++) {
// std::cout << "Iteration: " << iterations << '\n';
const int dim = std::sqrt(pattern.size());
if (dim % 2 == 0) {
n_parts = dim/2;
n = 2;
} else if (dim % 3 == 0) {
n_parts = dim/3;
n = 3;
} else {
std::cout << "Weird" << '\n';
std::cout << dim << '\n';
exit(0);
}
// std::cout << "dim == " << dim << '\n';
// std::cout << "n_parts == " << n_parts << '\n';
// std::cout << "n == " << n << '\n';
// std::cout << "Pattern: " <<'\n';
// print_pattern(pattern);
for (int parts_row = 0; parts_row < n_parts; parts_row++) {
const int row = n * parts_row;
for (int parts_col = 0; parts_col < n_parts; parts_col++) {
const int col = n * parts_col;
std::unordered_map<Coord2D, char, hasher> mini_pattern;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
mini_pattern[Coord2D(i,j)]= pattern[Coord2D(row + i, col + j)];
}
}
// std::cout << "Mini pattern: " <<'\n';
// print_pattern(mini_pattern);
const auto new_mini_pattern = rules.at(pattern_to_string(mini_pattern));
// std::cout << "New mini pattern: " <<'\n';
// print_pattern(new_mini_pattern);
for (int i = 0; i < n + 1; i++) {
for (int j = 0; j < n + 1; j++) {
new_pattern[Coord2D((n + 1)* parts_row + i, (n + 1) * parts_col + j)] = new_mini_pattern.at(Coord2D(i,j));
}
}
}
}
std::swap(pattern, new_pattern);
// std::cout << count_on_in_pattern(pattern) <<'\n';
}
// std::cout << "Pattern: " <<'\n';
// print_pattern(pattern);
std::cout << count_on_in_pattern(pattern) <<'\n';
return 0;
}