-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
120 lines (97 loc) · 4.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
imgTarget = cv2.imread('img.jpg')
myVid = cv2.VideoCapture('video1.mp4')
detection = False
frameCounter = 0
imgTarget = cv2.resize(imgTarget, (400, 600))
success, imgVideo = myVid.read()
hT, wT, cT = imgTarget.shape
imgVideo = cv2.resize(imgVideo, (wT, hT))
orb = cv2.ORB_create(nfeatures=1000)
kp1, des1 = orb.detectAndCompute(imgTarget, None)
# imgTarget = cv2.drawKeypoints(imgTarget, kp1, None)
def stackImages(imgArray,scale,lables=[]):
sizeW= imgArray[0][0].shape[1]
sizeH = imgArray[0][0].shape[0]
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
if rowsAvailable:
for x in range ( 0, rows):
for y in range(0, cols):
imgArray[x][y] = cv2.resize(imgArray[x][y], (sizeW,sizeH), None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((sizeH, sizeW, 3), np.uint8)
hor = [imageBlank]*rows
hor_con = [imageBlank]*rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
hor_con[x] = np.concatenate(imgArray[x])
ver = np.vstack(hor)
ver_con = np.concatenate(hor)
else:
for x in range(0, rows):
imgArray[x] = cv2.resize(imgArray[x], (sizeW, sizeH), None, scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor= np.hstack(imgArray)
hor_con= np.concatenate(imgArray)
ver = hor
if len(lables) != 0:
eachImgWidth= int(ver.shape[1] / cols)
eachImgHeight = int(ver.shape[0] / rows)
print(eachImgHeight)
for d in range(0, rows):
for c in range (0,cols):
cv2.rectangle(ver,(c*eachImgWidth,eachImgHeight*d),(c*eachImgWidth+len(lables[d])*13+27,30+eachImgHeight*d),(255,255,255),cv2.FILLED)
cv2.putText(ver,lables[d],(eachImgWidth*c+10,eachImgHeight*d+20),cv2.FONT_HERSHEY_COMPLEX,0.7,(255,0,255),2)
return ver
while True:
success, imgWebCam = cap.read()
imgAug = imgWebCam.copy()
kp2, des2 = orb.detectAndCompute(imgWebCam, None)
imgWebCam = cv2.drawKeypoints(imgWebCam, kp2, None)
if detection == False:
myVid.set(cv2.CAP_PROP_POS_FRAMES, 0)
frameCounter = 0
else:
if frameCounter == myVid.get(cv2.CAP_PROP_FRAME_COUNT):
myVid.set(cv2.CAP_PROP_POS_FRAMES, 0)
frameCounter = 0
success, imgVideo = myVid.read()
imgVideo = cv2.resize(imgVideo, (wT, hT))
bf = cv2.BFMatcher()
macthes = bf.knnMatch(des1, des2, k=2)
good = []
for m, n in macthes:
if m.distance < 0.75 * n.distance:
good.append(m)
print(len(good))
imgFeatures = cv2.drawMatches(imgTarget, kp1, imgWebCam, kp2, good, None, flags=2)
if len(good) > 20:
detection = True
srcPts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dstPts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
matrix, mask = cv2.findHomography(srcPts, dstPts, cv2.RANSAC, 5)
print(matrix)
pts = np.float32([[0,0], [0,hT], [wT, hT], [wT, 0]]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts, matrix)
img2 = cv2.polylines(imgWebCam, [np.int32(dst)], True, (255,0,255),3)
imgWarp = cv2.warpPerspective(imgVideo, matrix, (imgWebCam.shape[1], imgWebCam.shape[0]))
maskNew = np.zeros((imgWebCam.shape[0], imgWebCam.shape[1]), np.uint8)
cv2.fillPoly(maskNew, [np.int32(dst)], (255,255,255))
maskInv = cv2.bitwise_not(maskNew)
imgAug = cv2.bitwise_and(imgAug, imgAug, mask = maskInv)
imgAug = cv2.bitwise_or(imgWarp, imgAug)
imgStacked = stackImages(([imgWebCam, imgVideo, imgTarget], [imgFeatures, imgWarp, imgAug]), 0.5)
# cv2.imshow('maskNew', imgAug)
# cv2.imshow('ImgWarp', imgWarp)
# cv2.imshow('Img2', img2)
# cv2.imshow('ImgFeatures', imgFeatures)
# cv2.imshow('ImgTarget', imgTarget)
# cv2.imshow('myVid', imgVideo)
# cv2.imshow('WebCam', imgWebCam)
cv2.imshow('imgStacked', imgStacked)
cv2.waitKey(1)
frameCounter += 1