-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultIto.m
65 lines (35 loc) · 954 Bytes
/
MultIto.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function ItoInt = MultIto(dt,M,ksi)
% Purpose
% =======
% Find values of the multiple Ito integrals of the form:
% /t /s j1 j2
% I(j1,j2) = | | dW dW
% /0 /0
%
% Method
% ======
% Karhunen-Loeve (Fourier) series expansion:
% Ref - P.Kloeden "Numerical solution of stochastic differential
% equation", Chapter 5.8, Chapter 10.3
%
% Additionally we utilize the property:
%
% I(j1,j2) + I(j2,j1) = I(j1)*I(j2)
% Ref - P.Kloeden "Numerical solution of stochastic differential
% equation", (10.3.15)
%
%
% IN
% ==
% 1) dt - integrating time step
% 2) M - dimension of the white noise
%
% OUT
% ===
% Ito - M-by-M matrix with multiple Ito integrals
%
ItoInt = MultStrat(dt,M,ksi);
for i = 1:M
ItoInt(i,i) = ItoInt(i,i) - 0.5 * dt;
end
end