-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-relationships.tex
1256 lines (1096 loc) · 54.3 KB
/
chap-relationships.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Relationships between funcoids and reloids}
\section{Funcoid induced by a reloid}
\index{funcoid!induced by reloid}Every reloid $f$ induces a funcoid
$\tofcd f\in\mathsf{FCD}(\Src f,\Dst f)$ by the following formulas
(for every $\mathcal{X}\in\mathscr{F}(\Src f)$, $\mathcal{Y}\in\mathscr{F}(\Dst f)$):
\begin{gather*}
\mathcal{X}\suprel{\tofcd f}\mathcal{Y}\Leftrightarrow\forall F\in\up f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y};\\
\supfun{\tofcd f}\mathcal{X}=\bigsqcap_{F\in\up f}^{\mathscr{F}}\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}.
\end{gather*}
We should prove that $\tofcd f$ is really a funcoid.
\begin{proof}
We need to prove that
\[
\mathcal{X}\suprel{\tofcd f}\mathcal{Y}\Leftrightarrow\mathcal{Y}\sqcap\supfun{\tofcd f}\mathcal{X}\ne\bot\Leftrightarrow
\mathcal{X}\sqcap\supfun{\tofcd f^{-1}}\mathcal{Y}\ne\bot.
\]
The above formula is equivalent to:
\begin{align*}
\forall F\in\up f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y} & \Leftrightarrow\\
\mathcal{Y}\sqcap\bigsqcap_{F\in\up f}\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}\ne\bot & \Leftrightarrow\\
\mathcal{X}\sqcap\bigsqcap_{F\in\up f}\supfun{\uparrow^{\mathsf{FCD}}F^{-1}}\mathcal{Y}\ne\bot.
\end{align*}
We have $\mathcal{Y}\sqcap\bigsqcap_{F\in\up f}\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}=\bigsqcap_{F\in\up f}(\mathcal{Y}\sqcap\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X})$.
Let's denote $W=\setcond{\mathcal{Y}\sqcap\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}}{F\in\up f}$.
\[
\forall F\in\up f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y} \Leftrightarrow
\forall F\in\up f:\mathcal{Y}\sqcap\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}\ne\bot\Leftrightarrow\bot\notin W.
\]
We need to prove only that $\bot\notin W\Leftrightarrow\bigsqcap W\ne\bot$.
(The rest follows from symmetry.) To prove it is enough to show that~$W$ is a generalized filter base.
Let's prove that $W$ is a generalized filter base. For this it's
enough to prove that $V=\setcond{\supfun{\uparrow^{\mathsf{FCD}}F}\mathcal{X}}{F\in\up f}$
is a generalized filter base. Let $\mathcal{A},\mathcal{B}\in V$
that is $\mathcal{A}=\supfun{\uparrow^{\mathsf{FCD}}P}\mathcal{X}$,
$\mathcal{B}=\supfun{\uparrow^{\mathsf{FCD}}Q}\mathcal{X}$ where
$P,Q\in\up f$. Then for $\mathcal{C}=\supfun{\uparrow^{\mathsf{FCD}}(P\sqcap Q)}\mathcal{X}$
is true both $\mathcal{C}\in V$ and $\mathcal{C}\sqsubseteq\mathcal{A},\mathcal{B}$.
So $V$ is a generalized filter base and thus $W$ is a generalized
filter base.\end{proof}
\begin{prop}
\label{fcd-discr}$\tofcd\uparrow^{\mathsf{RLD}}f=\uparrow^{\mathsf{FCD}}f$
for every $\mathbf{Rel}$-morphism $f$.\end{prop}
\begin{proof}
$\mathcal{X}\suprel{\tofcd\uparrow^{\mathsf{RLD}}f}\mathcal{Y}\Leftrightarrow\forall F\in\up\uparrow^{\mathsf{RLD}}f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}\Leftrightarrow\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}f}\mathcal{Y}$
(for every $\mathcal{X}\in\mathscr{F}(\Src f)$, $\mathcal{Y}\in\mathscr{F}(\Dst f)$).\end{proof}
\begin{thm}
$\mathcal{X}\suprel{\tofcd f}\mathcal{Y}\Leftrightarrow\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp f$
for every reloid~$f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$,
$\mathcal{Y}\in\mathscr{F}(\Dst f)$.\end{thm}
\begin{proof}
~
\begin{align*}
\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp f & \Leftrightarrow\\
\forall F\in\up f,P\in\up(\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}):P\nasymp F & \Leftrightarrow\\
\forall F\in\up f,X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\times Y\nasymp F & \Leftrightarrow\\
\forall F\in\up f,X\in\up\mathcal{X},Y\in\up\mathcal{Y}:X\suprel{\uparrow^{\mathsf{FCD}}F}Y & \Leftrightarrow\\
\forall F\in\up f:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y} & \Leftrightarrow\\
\mathcal{X}\suprel{\tofcd f}\mathcal{Y}.
\end{align*}
\end{proof}
\begin{thm}
\label{fcd-as-meet}$\tofcd f=\bigsqcap^{\mathsf{FCD}}\up f$ for
every reloid~$f$.\end{thm}
\begin{proof}
Let $a$ be an ultrafilter on $\Src f$.
$\supfun{\tofcd f}a=\bigsqcap\setcond{\supfun{\uparrow^{\mathsf{FCD}}F}a}{F\in\up f}$
by the definition of $\tofcd$.
$\supfun{\bigsqcap^{\mathsf{FCD}}\up f}a=\bigsqcap\setcond{\supfun{\uparrow^{\mathsf{FCD}}F}a}{F\in\up f}$
by theorem \ref{fcd-intrs-atom}.
So $\supfun{\tofcd f}a=\supfun{\bigsqcap^{\mathsf{FCD}}\up f}a$ for
every ultrafilter $a$.\end{proof}
\begin{lem}
\label{base-intrs-lem}For every two filter bases $S$ and $T$ of
morphisms $\mathbf{Rel}(U,V)$ and every typed set $A\in\mathscr{T}U$
\[
\bigsqcap^{\mathsf{RLD}}S=\bigsqcap^{\mathsf{RLD}}T\Rightarrow\bigsqcap_{F\in S}^{\mathscr{F}}\rsupfun FA=\bigsqcap_{G\in T}^{\mathscr{F}}\rsupfun GA.
\]
\end{lem}
\begin{proof}
Let $\bigsqcap^{\mathsf{RLD}}S=\bigsqcap^{\mathsf{RLD}}T$.
First let prove that $\setcond{\rsupfun FA}{F\in S}$ is a filter
base. Let $X,Y\in\setcond{\rsupfun FA}{F\in S}$. Then $X=\rsupfun{F_{X}}A$
and $Y=\rsupfun{F_{Y}}A$ for some $F_{X},F_{Y}\in S$. Because $S$
is a filter base, we have $S\ni F_{Z}\sqsubseteq F_{X}\sqcap F_{Y}$.
So $\rsupfun{F_{Z}}A\sqsubseteq X\sqcap Y$ and $\rsupfun{F_{Z}}A\in\setcond{\rsupfun FA}{F\in S}$.
So $\setcond{\rsupfun FA}{F\in S}$ is a filter base.
Suppose $X\in\up\bigsqcap_{F\in S}^{\mathscr{F}}\rsupfun FA$. Then there
exists $X'\in\setcond{\rsupfun FA}{F\in S}$ where $X\sqsupseteq X'$
because $\setcond{\rsupfun FA}{F\in S}$ is a filter base. That is
$X'=\rsupfun FA$ for some $F\in S$. There exists $G\in T$ such
that $G\sqsubseteq F$ because $T$ is a filter base. Let $Y'=\rsupfun GA$.
We have $Y'\sqsubseteq X'\sqsubseteq X$; $Y'\in\setcond{\rsupfun GA}{G\in T}$;
$Y'\in\up\bigsqcap_{G\in T}^{\mathscr{F}}\rsupfun GA$; $X\in\up\bigsqcap_{G\in T}^{\mathscr{F}}\rsupfun GA.$
The reverse is symmetric.\end{proof}
\begin{lem}
$\setcond{G\circ F}{F\in\up f,G\in\up g}$ is a filter base for every
reloids~$f$ and~$g$.\end{lem}
\begin{proof}
Let denote $D=\setcond{G\circ F}{F\in\up f,G\in\up g}$. Let $A\in D\land B\in D$.
Then $A=G_{A}\circ F_{A}\land B=G_{B}\circ F_{B}$ for some $F_{A},F_{B}\in\up f$,
$G_{A},G_{B}\in\up g$. So $A\sqcap B\sqsupseteq(G_{A}\sqcap G_{B})\circ(F_{A}\sqcap F_{B})\in D$
because $F_{A}\sqcap F_{B}\in\up f$ and $G_{A}\sqcap G_{B}\in\up g$.\end{proof}
\begin{thm}
$\tofcd(g\circ f)=(\tofcd g)\circ(\tofcd f)$ for every composable
reloids $f$ and $g$.\end{thm}
\begin{proof}
~
\[
\rsupfun{\tofcd(g\circ f)}X=\bigsqcap_{H\in\up(g\circ f)}^{\mathscr{F}}\rsupfun HX=\bigsqcap_{H\in\up\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}}^{\mathscr{F}}\rsupfun HX.
\]
Obviously
\[
\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}=\bigsqcap^{\mathsf{RLD}}\up\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g};
\]
from this by lemma \ref{base-intrs-lem} (taking into account that
\[
\setcond{G\circ F}{F\in\up f,G\in\up g}
\]
and
\[
\up\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}
\]
are filter bases)
\[
\bigsqcap_{H\in\up\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\up f,G\in\up g}}^{\mathsf{RLD}}\rsupfun HX=\bigsqcap^{\mathscr{F}}\setcond{\rsupfun{G\circ F}X}{F\in\up f,G\in\up g}.
\]
On the other side
\begin{multline*}
\rsupfun{(\tofcd g)\circ(\tofcd f)}X=\supfun{\tofcd g}\rsupfun{\tofcd f}X=\\
\supfun{\tofcd g}\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun FX=\bigsqcap_{G\in\up g}\supfun{\uparrow^{\mathsf{FCD}}G}\bigsqcap_{F\in\up f}^{\mathsf{RLD}}\rsupfun FX.
\end{multline*}
Let's prove that $\setcond{\rsupfun FX}{F\in\up f}$ is a filter base.
If $A,B\in\setcond{\rsupfun FX}{F\in\up f}$ then $A=\rsupfun{F_{1}}X$,
$B=\rsupfun{F_{2}}X$ where $F_{1},F_{2}\in\up f$. $A\sqcap B\sqsupseteq\rsupfun{F_{1}\sqcap F_{2}}X\in\setcond{\rsupfun FX}{F\in\up f}$.
So $\setcond{\rsupfun FX}{F\in\up f}$ is really a filter base.
By theorem \ref{supfun-genbase} we have
\[
\supfun{\uparrow^{\mathsf{FCD}}G}\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun FX=\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun G\rsupfun FX.
\]
So continuing the above equalities,
\begin{align*}
\rsupfun{(\tofcd g)\circ(\tofcd f)}X & =\\
\bigsqcap_{G\in\up g}^{\mathscr{F}}\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun G\rsupfun FX & =\\
\bigsqcap^{\mathscr{F}}\setcond{\rsupfun G\rsupfun FX}{F\in\up f,G\in\up g} & =\\
\bigsqcap^{\mathscr{F}}\setcond{\rsupfun{G\circ F}X}{F\in\up f,G\in\up g}.
\end{align*}
Combining these equalities we get $\rsupfun{\tofcd(g\circ f)}X=\rsupfun{(\tofcd g)\circ(\tofcd f)}X$
for every typed set $X\in\mathscr{T}(\Src f)$.\end{proof}
\begin{prop}\label{fcd-id}
$\tofcd\id_{\mathcal{A}}^{\mathsf{RLD}}=\id_{\mathcal{A}}^{\mathsf{FCD}}$
for every filter $\mathcal{A}$.\end{prop}
\begin{proof}
Recall that $\id_{\mathcal{A}}^{\mathsf{RLD}}=\bigsqcap\setcond{\uparrow^{\Base(\mathcal{A})}\id_{A}}{A\in\up\mathcal{A}}$.
For every $\mathcal{X},\mathcal{Y}\in\mathscr{F}(\Base(\mathcal{A}))$ we
have
\begin{align*}
\mathcal{X}\suprel{\tofcd\id_{\mathcal{A}}^{\mathsf{RLD}}}\mathcal{Y} & \Leftrightarrow\\
\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp\id_{\mathcal{A}}^{\mathsf{RLD}} & \Leftrightarrow\\
\forall A\in\up\mathcal{A}:\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A} & \Leftrightarrow\\
\forall A\in\up\mathcal{A}:\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}(\Base(\mathcal{A}),\Base(\mathcal{A}))}\id_{A}}\mathcal{Y} & \Leftrightarrow\\
\forall A\in\up\mathcal{A}:\mathcal{X}\sqcap\mathcal{Y}\nasymp A & \Leftrightarrow\\
\mathcal{X}\sqcap\mathcal{Y}\nasymp\mathcal{A} & \Leftrightarrow\\
\mathcal{X}\suprel{\id_{\mathcal{A}}^{\mathsf{FCD}}}\mathcal{Y}
\end{align*}
(used properties of generalized filter bases).\end{proof}
\begin{cor}
$\tofcd1_{A}^{\mathsf{RLD}}=1_{A}^{\mathsf{FCD}}$ for every set~$A$.\end{cor}
\begin{prop}
$\tofcd$ is a functor from~$\mathsf{RLD}$ to~$\mathsf{FCD}$.\end{prop}
\begin{proof}
Preservation of composition and of identity is proved above.
\end{proof}
\begin{prop}
~
\begin{enumerate}
\item $\tofcd f$ is a monovalued funcoid if $f$ is a monovalued reloid.
\item $\tofcd f$ is an injective funcoid if $f$ is an injective reloid.
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the first as the second is dual. Let $f$ be a
monovalued reloid. Then $f\circ f^{-1}\sqsubseteq1_{\Dst f}^{\mathsf{RLD}}$;
$\tofcd(f\circ f^{-1})\sqsubseteq1_{\Dst f}^{\mathsf{FCD}}$; $\tofcd f\circ(\tofcd f)^{-1}\sqsubseteq1_{\Dst f}^{\mathsf{FCD}}$
that is $\tofcd f$ is a monovalued funcoid.\end{proof}
\begin{prop}
\label{fcd-of-rprod}$\tofcd(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}$
for every filters $\mathcal{A}$,~$\mathcal{B}$.\end{prop}
\begin{proof}
$\mathcal{X}\suprel{\tofcd(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})}\mathcal{Y}\Leftrightarrow\forall F\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}):\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}$
(for every $\mathcal{X}\in\mathscr{F}(\Base(\mathcal{A}))$, $\mathcal{Y}\in\mathscr{F}(\Base(\mathcal{B}))$.
Evidently
\[
\forall F\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}):\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}\Rightarrow\forall A\in\up\mathcal{A},B\in\up\mathcal{B}:\mathcal{X}\suprel{A\times B}\mathcal{Y}.
\]
Let $\forall A\in\up\mathcal{A},B\in\up\mathcal{B}:\mathcal{X}\suprel{A\times B}\mathcal{Y}$.
Then if $F\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$, there
are $A\in\up\mathcal{A}$, $B\in\up\mathcal{B}$ such that $F\sqsupseteq A\times B$.
So $\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}$. We
have proved
\[
\forall F\in\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}):\mathcal{X}\suprel{\uparrow^{\mathsf{FCD}}F}\mathcal{Y}\Leftrightarrow\forall A\in\up\mathcal{A},B\in\up\mathcal{B}:\mathcal{X}\suprel{A\times B}\mathcal{Y}.
\]
Further
\begin{multline*}
\forall A\in\up\mathcal{A},B\in\up\mathcal{B}:\mathcal{X}\suprel{A\times B}\mathcal{Y}\Leftrightarrow\\
\forall A\in\up\mathcal{A},B\in\up\mathcal{B}:(\mathcal{X}\nasymp A\land\mathcal{Y}\nasymp B)\Leftrightarrow\\
\mathcal{X}\nasymp\mathcal{A}\land\mathcal{Y}\nasymp\mathcal{B}\Leftrightarrow\mathcal{X}\suprel{\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}}\mathcal{Y}.
\end{multline*}
Thus $\mathcal{X}\suprel{\tofcd(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})}\mathcal{Y}\Leftrightarrow\mathcal{X}\suprel{\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}}\mathcal{Y}$.\end{proof}
\begin{prop}
$\dom\tofcd f=\dom f$ and $\im\tofcd f=\im f$ for every reloid~$f$.\end{prop}
\begin{proof}
~
\begin{multline*}
\im\tofcd f=\supfun{\tofcd f}\top=\bigsqcap_{F\in\up f}^{\mathscr{F}}\rsupfun F\top=\\
\bigsqcap_{F\in\up f}^{\mathscr{F}}\im F=\bigsqcap^{\mathscr{F}}\rsupfun{\im}\up f=\im f.
\end{multline*}
$\dom\tofcd f=\dom f$ is similar.\end{proof}
\begin{prop}\label{fcd-meet-prod-rld}
$\tofcd(f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}))=\tofcd f\sqcap(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})$
for every reloid~$f$ and $\mathcal{A}\in\mathscr{F}(\Src f)$ and
$\mathcal{B}\in\mathscr{F}(\Dst f)$.\end{prop}
\begin{proof}
~
\begin{align*}
\tofcd(f\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})) & =\\
\tofcd(\id_{\mathcal{B}}^{\mathsf{RLD}}\circ f\circ\id_{\mathcal{A}}^{\mathsf{RLD}}) & =\\
\tofcd\id_{\mathcal{B}}^{\mathsf{RLD}}\circ\tofcd f\circ\tofcd\id_{\mathcal{A}}^{\mathsf{RLD}} & =\\
\id_{\mathcal{B}}^{\mathsf{FCD}}\circ\tofcd f\circ\id_{\mathcal{A}}^{\mathsf{FCD}} & =\\
\tofcd f\sqcap(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}).
\end{align*}
\end{proof}
\begin{cor}
$\tofcd(f|_{\mathcal{A}})=(\tofcd f)|_{\mathcal{A}}$ for every reloid~$f$
and a filter $\mathcal{A}\in\mathscr{F}(\Src f)$.\end{cor}
\begin{prop}
$\supfun{\tofcd f}\mathcal{X}=\im(f|_{\mathcal{X}})$ for every reloid
$f$ and a filter $\mathcal{X}\in\mathscr{F}(\Src f)$.\end{prop}
\begin{proof}
$\im(f|_{\mathcal{X}})=\im\tofcd(f|_{\mathcal{X}})=\im((\tofcd f)|_{\mathcal{X}})=\supfun{\tofcd f}\mathcal{X}$.\end{proof}
\begin{prop}
$\tofcd f=\bigsqcup\setcond{x\times^{\mathsf{FCD}}y}{x\in\atoms^{\mathscr{F}(\Src f)},y\in\atoms^{\mathscr{F}(\Dst f)},x\times^{\mathsf{RLD}}y\nasymp f}$
for every reloid $f$.\end{prop}
\begin{proof}
$\tofcd f=\bigsqcup\setcond{x\times^{\mathsf{FCD}}y}{x\in\atoms^{\mathscr{F}(\Src f)},y\in\atoms^{\mathscr{F}(\Dst f)},x\times^{\mathsf{FCD}}y\nasymp\tofcd f}$,
but \[x\times^{\mathsf{FCD}}y\nasymp\tofcd f\Leftrightarrow x\suprel{\tofcd f}y\Leftrightarrow x\times^{\mathsf{RLD}}y\nasymp f,\]
thus follows the theorem.
\end{proof}
\section{Reloids induced by a funcoid}
\index{reloid!inward}\index{reloid!outward}Every funcoid $f\in\mathsf{FCD}(A,B)$
induces a reloid from $A$ to $B$ in two ways, intersection of \emph{outward}
relations and union of \emph{inward} reloidal products of filters:
\begin{gather*}
\torldout f=\bigsqcap^{\mathsf{RLD}}\up f;\\
\torldin f=\bigsqcup\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}.
\end{gather*}
\begin{thm}
$\torldin f=\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq f}$.\end{thm}
\begin{proof}
It follows from theorem \ref{rld-prod-t-atoms}.\end{proof}
\begin{prop}
$\up\uparrow^{\mathsf{RLD}}f=\up\uparrow^{\mathsf{FCD}}f$ for every
$\mathbf{Rel}$-morphism $f$.\end{prop}
\begin{proof}
$X\in\up\uparrow^{\mathsf{RLD}}f\Leftrightarrow X\sqsupseteq f\Leftrightarrow X\in\up\uparrow^{\mathsf{FCD}}f$.\end{proof}
\begin{prop}
$\torldout\uparrow^{\mathsf{FCD}}f=\uparrow^{\mathsf{RLD}}f$ for
every $\mathbf{Rel}$-morphism $f$.\end{prop}
\begin{proof}
$\torldout\uparrow^{\mathsf{FCD}}f=\bigsqcap^{\mathsf{RLD}}\up f=\uparrow^{\mathsf{RLD}}\min\up f=\uparrow^{\mathsf{RLD}}f$
taking into account the previous proposition.
\end{proof}
Surprisingly, a funcoid is greater inward than outward:
\begin{thm}
$\torldout f\sqsubseteq\torldin f$ for every funcoid $f$.\end{thm}
\begin{proof}
We need to prove
\[
\torldout f\sqsubseteq\bigsqcup\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}.
\]
Let
\[
K\in\up\bigsqcup\setcond{\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}.
\]
Then
\begin{align*}
K & \in\up\uparrow^{\mathsf{RLD}}\bigsqcup\setcond{X_{\mathcal{A}}\times Y_{\mathcal{B}}}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}\\
& =\torldout\uparrow^{\mathsf{FCD}}\bigsqcup\setcond{X_{\mathcal{A}}\times Y_{\mathcal{B}}}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}\\
& =\torldout\bigsqcup^{\mathsf{FCD}}\setcond{\uparrow^{\mathsf{FCD}}(X_{\mathcal{A}}\times Y_{\mathcal{B}})}{\mathcal{A}\in\mathscr{F}(A),\mathcal{B}\in\mathscr{F}(B),\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f}\\
& \sqsupseteq\torldout\bigsqcup\atoms f\\
& =\torldout f
\end{align*}
where $X_{\mathcal{A}}\in\up\mathcal{A}$, $X_{\mathcal{B}}\in\up\mathcal{B}$.
$K\in\up\torldout f$.\end{proof}
\begin{prop}
$\torldout f \sqcup \torldout g = \torldout(f \sqcup g)$
for funcoids~$f$,~$g$.
\end{prop}
\begin{proof}
\begin{multline*}
\torldout f \sqcup \torldout g = \bigsqcap^{\mathsf{RLD}}_{F \in \up f} F \sqcup
\bigsqcap^{\mathsf{RLD}}_{G \in \up g} G =\\ \bigsqcap^{\mathsf{RLD}}_{F \in
\up f, G \in \up g} (F \sqcup G) = \bigsqcap^{\mathsf{RLD}}_{H \in
\up (f \sqcup g)} H = \torldout (f \sqcup g).
\end{multline*}
\end{proof}
\begin{thm}
$\tofcd\torldin f=f$ for every funcoid $f$.\end{thm}
\begin{proof}
For every typed sets $X\in\mathscr{T}(\Src f)$, $Y\in\mathscr{T}(\Dst f)$
\begin{align*}
X\rsuprel{\tofcd\torldin f}Y & \Leftrightarrow\\
X\times^{\mathsf{RLD}}Y\nasymp\torldin f & \Leftrightarrow\\
\uparrow^{\mathsf{RLD}}(X\times Y)\nasymp\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq f} & \Leftrightarrow\text{(*)}\\
\exists a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)}:(a\times^{\mathsf{FCD}}b\sqsubseteq f\land a\sqsubseteq X\land b\sqsubseteq Y) & \Leftrightarrow\\
X\rsuprel fY.
\end{align*}
{*} theorem~\ref{crit1}.
Thus $\tofcd\torldin f=f$.\end{proof}
\begin{rem}
The above theorem allows to represent funcoids as reloids ($\torldin f$ is the reloid representing funcoid~$f$). Refer to
the section ``\nameref{fcd-rld}'' below for more details.\end{rem}
\begin{obvious}
$\torldin(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})=\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for every filters $\mathcal{A}$,~$\mathcal{B}$.\end{obvious}
\begin{conjecture}
$\torldout\id_{\mathcal{A}}^{\mathsf{FCD}}=\id_{\mathcal{A}}^{\mathsf{RLD}}$
for every filter $\mathcal{A}$.\end{conjecture}
\begin{xca}
Prove that generally $\torldin\id_{\mathcal{A}}^{\mathsf{FCD}}\ne\id_{\mathcal{A}}^{\mathsf{RLD}}$.
I call $\torldin\id_{\mathcal{A}}^{\mathsf{FCD}}$ \emph{thick identity} or \emph{thick diagonal},
because it is greater (``thicker'') than identity~$\id_{\mathcal{A}}^{\mathsf{RLD}}$.\end{xca}
\begin{prop}
$\dom\torldin f=\dom f$ and $\im\torldin f=\im f$ for every funcoid~$f$.\end{prop}
\begin{proof}
We will prove only $\dom\torldin f=\dom f$ as the other formula follows
from symmetry. Really:
$\dom\torldin f=\dom\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(\Src f)},b\in\atoms^{\mathscr{F}(\Dst f)},a\times^{\mathsf{FCD}}b\sqsubseteq f}$.
By corollary~\ref{rld-dom-join} we have
\begin{align*}
\dom\torldin f & =\\
\bigsqcup\setcond{\dom(a\times^{\mathsf{RLD}}b)}{a\in\atoms^{\mathscr{F}(\Src f)},b\in\atoms^{\mathscr{F}(\Dst f)},a\times^{\mathsf{FCD}}b\sqsubseteq f} & =\\
\bigsqcup\setcond{\dom(a\times^{\mathsf{FCD}}b)}{a\in\atoms^{\mathscr{F}(\Src f)},b\in\atoms^{\mathscr{F}(\Dst f)},a\times^{\mathsf{FCD}}b\sqsubseteq f}.
\end{align*}
By corollary~\ref{fcd-dom-join} we have
\begin{align*}
\dom\torldin f & =\\
\dom\bigsqcup\setcond{a\times^{\mathsf{FCD}}b}{a\in\atoms^{\mathscr{F}(\Src f)},b\in\atoms^{\mathscr{F}(\Dst f)},a\times^{\mathsf{FCD}}b\sqsubseteq f} & =\\
\dom f.
\end{align*}
\end{proof}
\begin{prop}
$\dom(f|_{\mathcal{A}})=\mathcal{A}\sqcap\dom f$ for every reloid
$f$ and filter $\mathcal{A}\in\mathscr{F}(\Src f)$.\end{prop}
\begin{proof}
$\dom(f|_{\mathcal{A}})=\dom\tofcd(f|_{\mathcal{A}})=\dom(\tofcd f)|_{\mathcal{A}}=\mathcal{A}\sqcap\dom\tofcd f=\mathcal{A}\sqcap\dom f$.\end{proof}
\begin{thm}
For every composable reloids $f$, $g$:
\begin{enumerate}
\item \label{rld-im-ge-dom}If $\im f\sqsupseteq\dom g$ then $\im(g\circ f)=\im g$;
\item \label{rld-im-le-dom}If $\im f\sqsubseteq\dom g$ then $\dom(g\circ f)=\dom f$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{rld-im-ge-dom}}] $\im(g\circ f)=\im\tofcd(g\circ f)=\im(\tofcd g\circ\tofcd f)=\im\tofcd g=\im g$.
\item [{\ref{rld-im-le-dom}}] Similar.
\end{widedisorder}
\end{proof}
\begin{lem}
If $a$, $b$, $c$ are filters on powersets and $b\neq\bot$, then
\[
\bigsqcup^{\mathsf{RLD}}\setcond{G\circ F}{F\in\atoms(a\times^{\mathsf{RLD}}b),G\in\atoms(b\times^{\mathsf{RLD}}c)}=a\times^{\mathsf{RLD}}c.
\]
\end{lem}
\begin{proof}
~
\begin{multline*}
a\times^{\mathsf{RLD}}c=(b\times^{\mathsf{RLD}}c)\circ(a\times^{\mathsf{RLD}}b)=\text{(corollary \ref{rld-comp-at})}=\\
\bigsqcup^{\mathsf{RLD}}\setcond{G\circ F}{F\in\atoms(a\times^{\mathsf{RLD}}b),G\in\atoms(b\times^{\mathsf{RLD}}c)}.
\end{multline*}
\end{proof}
\begin{thm}
$a\times^{\mathsf{RLD}}b\sqsubseteq\torldin f\Leftrightarrow a\times^{\mathsf{FCD}}b\sqsubseteq f$
for every funcoid $f$ and $a\in\atoms^{\mathscr{F}(\Src f)}$, $b\in\atoms^{\mathscr{F}(\Dst f)}$.\end{thm}
\begin{proof}
$a\times^{\mathsf{FCD}}b\sqsubseteq f\Rightarrow a\times^{\mathsf{RLD}}b\sqsubseteq\torldin f$
is obvious.
\begin{multline*}
a\times^{\mathsf{RLD}}b\sqsubseteq\torldin f\Rightarrow a\times^{\mathsf{RLD}}b\nasymp\torldin f\Rightarrow\\
a\suprel{\tofcd\torldin f}b\Rightarrow a\suprel fb\Rightarrow a\times^{\mathsf{FCD}}b\sqsubseteq f.
\end{multline*}
\end{proof}
\begin{conjecture}
If $\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}\sqsubseteq\torldin f$
then $\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}\sqsubseteq f$ for
every funcoid $f$ and $\mathcal{A}\in\mathscr{F}(\Src f)$, $\mathcal{B}\in\mathscr{F}(\Dst f)$.\end{conjecture}
\begin{thm}
$\up\tofcd g\supseteq\up g$ for every reloid $g$.\end{thm}
\begin{proof}
Let $K\in\up g$. Then for every typed sets $X\in\mathscr{T}\Src g$, $Y\in\mathscr{T}\Dst g$
\[
X\rsuprel KY\Leftrightarrow X\rsuprel{\uparrow^{\mathsf{FCD}}K}Y\Leftrightarrow X\rsuprel{\tofcd\uparrow^{\mathsf{RLD}}K}Y\Leftarrow X\rsuprel{\tofcd g}Y.
\]
Thus $\uparrow^{\mathsf{FCD}}K\sqsupseteq\tofcd g$ that is $K\in\up\tofcd g$.\end{proof}
\begin{thm}
$g\circ(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\circ f=\supfun{\tofcd f^{-1}}\mathcal{A}\times^{\mathsf{RLD}}\supfun{\tofcd g}\mathcal{B}$
for every reloids $f$, $g$ and filters $\mathcal{A}\in\mathscr{F}(\Dst f)$,
$\mathcal{B}\in\mathscr{F}(\Src g)$.\end{thm}
\begin{proof}
~
\begin{align*}
g\circ(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\circ f & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{G\circ(A\times B)\circ F}{F\in\up f,G\in\up g,A\in\up\mathcal{A},B\in\up\mathcal{B}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\rsupfun{F^{-1}}A\times\rsupfun GB}{F\in\up f,G\in\up g,A\in\up\mathcal{A},B\in\up\mathcal{B}} & =\\
\bigsqcap^{\mathsf{RLD}}\setcond{\rsupfun{F^{-1}}A\times^{\mathsf{RLD}}\rsupfun GB}{F\in\up f,G\in\up g,A\in\up\mathcal{A},B\in\up\mathcal{B}} & =\\
\text{(theorem \ref{meet-rld-prod})}\\
\bigsqcap^{\mathscr{F}}\setcond{\rsupfun{F^{-1}}A}{F\in\up f,A\in\up\mathcal{A}}\times^{\mathsf{RLD}}\bigsqcap^{\mathscr{F}}\setcond{\rsupfun GB}{G\in\up g,B\in\up\mathcal{B}} & =\\
\bigsqcap^{\mathscr{F}}\setcond{\rsupfun{\uparrow^{\mathsf{FCD}}F^{-1}}A}{F\in\up f,A\in\up\mathcal{A}}\times^{\mathsf{RLD}}\bigsqcap^{\mathscr{F}}\setcond{\rsupfun{\uparrow^{\mathsf{FCD}}G}B}{G\in\up g,B\in\up\mathcal{B}} & =\\
\bigsqcap^{\mathscr{F}}\setcond{\supfun{\uparrow^{\mathsf{FCD}}F^{-1}}\mathcal{A}}{F\in\up f}\times^{\mathsf{RLD}}\bigsqcap^{\mathscr{F}}\setcond{\supfun{\uparrow^{\mathsf{FCD}}G}\mathcal{B}}{G\in\up g} & =\\
\text{(by definition of \ensuremath{\tofcd})} & \text{}\\
\supfun{\tofcd f^{-1}}\mathcal{A}\times^{\mathsf{RLD}}\supfun{\tofcd g}\mathcal{B}.
\end{align*}
\end{proof}
\begin{cor}
~
\begin{enumerate}
\item $(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\circ f=\supfun{\tofcd f^{-1}}\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$;
\item $g\circ(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\mathcal{A}\times^{\mathsf{RLD}}\supfun{\tofcd g}\mathcal{B}$.
\end{enumerate}
\end{cor}
\section{\index{Galois connection!between funcoids and reloids}Galois connections
between funcoids and reloids}
\begin{thm}
$\tofcd:\mathsf{RLD}(A,B)\rightarrow\mathsf{FCD}(A,B)$ is the lower
adjoint of $\torldin:\mathsf{FCD}(A,B)\rightarrow\mathsf{RLD}(A,B)$
for every sets $A$, $B$.\end{thm}
\begin{proof}
Because $\tofcd$ and $\torldin$ are trivially monotone, it's enough
to prove (for every $f\in\mathsf{RLD}(A,B)$, $g\in\mathsf{FCD}(A,B)$)
\[
f\sqsubseteq\torldin\tofcd f\quad\text{and}\quad\tofcd\torldin g\sqsubseteq g.
\]
The second formula follows from the fact that $\tofcd\torldin g=g$.
\begin{align*}
\torldin\tofcd f & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq\tofcd f} & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\suprel{\tofcd f}b} & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{RLD}}b\nasymp f} & \sqsupseteq\\
\bigsqcup\setcond{p\in\atoms(a\times^{\mathsf{RLD}}b)}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},p\nasymp f} & =\\
\bigsqcup\setcond{p\in\atoms^{\mathsf{RLD}(A,B)}}{p\nasymp f} & =\\
\bigsqcup\setcond p{p\in\atoms f}=f.
\end{align*}
\end{proof}
\begin{cor}\label{rels-dist}
~
\begin{enumerate}
\item $\tofcd\bigsqcup S=\bigsqcup\rsupfun{\tofcd}S$ if $S\in\subsets\mathsf{RLD}(A,B)$.
\item $\torldin\bigsqcap S=\bigsqcap\rsupfun{\torldin}S$ if $S\in\subsets\mathsf{FCD}(A,B)$.
\end{enumerate}
\end{cor}
\begin{thm}
$\torldin(f\sqcup g)=\torldin f\sqcup\torldin g$ for every funcoids
$f,g\in\mathsf{FCD}(A,B)$.\end{thm}
\begin{proof}
~
\begin{multline*}
\torldin(f\sqcup g)=\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq f\sqcup g}=\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq f\vee a\times^{\mathsf{FCD}}b\sqsubseteq g}=\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq f}\sqcup\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(A)},b\in\atoms^{\mathscr{F}(B)},a\times^{\mathsf{FCD}}b\sqsubseteq g}=\\
\torldin f\sqcup\torldin g.
\end{multline*}
\end{proof}
\begin{prop}
$\torldin(f\sqcap(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}))=(\torldin f)\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$
for every funcoid $f$ and $\mathcal{A}\in\mathscr{F}(\Src f)$, $\mathcal{B}\in\mathscr{F}(\Dst f)$.\end{prop}
\begin{proof}
~
\[
\torldin(f\sqcap(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}))=(\torldin f)\sqcap\torldin(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})=(\torldin f)\sqcap(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}).
\]
\end{proof}
\begin{cor}
$\torldin(f|_{\mathcal{A}})=(\torldin f)|_{\mathcal{A}}$.\end{cor}
\begin{conjecture}
$\torldin$ is not a lower adjoint (in general).
\end{conjecture}
\begin{conjecture}
$\torldout$ is neither a lower adjoint nor an upper adjoint (in general).\end{conjecture}
\begin{xca}
Prove that $\card\mathsf{FCD}(A,B)=2^{2^{\max\{A,B\}}}$ if $A$ or
$B$ is an infinite set (provided that $A$ and $B$ are nonempty).\end{xca}
\begin{lem}
$\uparrow^{\mathsf{FCD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq\tofcd g\Leftrightarrow\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq g$
for every reloid~$g$.\end{lem}
\begin{proof}
~
\begin{multline*}
\uparrow^{\mathsf{FCD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq\tofcd g\Leftrightarrow\\
\uparrow^{\mathsf{FCD}(\Src g,\Dst g)}\{(x,y)\}\nasymp\tofcd g\Leftrightarrow @\{x\}\rsuprel{\tofcd g}@\{y\}\Leftrightarrow\\
\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\nasymp g\Leftrightarrow\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq g.
\end{multline*}
\end{proof}
\begin{thm}
$\Cor\tofcd g=\tofcd\Cor g$ for every reloid $g$.\end{thm}
\begin{proof}
~
\begin{align*}
\Cor\tofcd g & =\\
\bigsqcup\setcond{\uparrow^{\mathsf{FCD}(\Src g,\Dst g)}\{(x,y)\}}{\uparrow^{\mathsf{FCD}}\{(x,y)\}\sqsubseteq\tofcd g} & =\\
\bigsqcup\setcond{\uparrow^{\mathsf{FCD}(\Src g,\Dst g)}\{(x,y)\}}{\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq g} & =\\
\bigsqcup\setcond{\tofcd\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}}{\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq g} & =\\
\tofcd\bigsqcup\setcond{\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}}{\uparrow^{\mathsf{RLD}(\Src g,\Dst g)}\{(x,y)\}\sqsubseteq g} & =\\
\tofcd\Cor g.
\end{align*}
\end{proof}
\begin{conjecture}
~
\begin{enumerate}
\item $\Cor\torldin g=\torldin\Cor g$;
\item $\Cor\torldout g=\torldout\Cor g$.
\end{enumerate}
\end{conjecture}
\begin{thm}
For every reloid $f$:
\begin{enumerate}
\item $\Compl (\mathsf{FCD}) f = (\mathsf{FCD})
\Compl f$;
\item $\CoCompl (\mathsf{FCD}) f = (\mathsf{FCD})
\CoCompl f$.
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only the first, because the second is dual.
\begin{multline*}
\Compl (\mathsf{FCD}) f = \bigsqcup_{\alpha \in \Src f}
((\mathsf{FCD}) f) |_{\uparrow \{ \alpha \}} =
\text{(proposition~\ref{fcd-meet-prod-rld})} = \\
\bigsqcup_{\alpha \in \Src f} (\mathsf{FCD})
(f|_{\uparrow \{ \alpha \}}) = (\mathsf{FCD}) \bigsqcup_{\alpha \in
\Src f} f|_{\uparrow \{ \alpha \}} = (\mathsf{FCD})
\Compl f.
\end{multline*}
\end{proof}
\begin{conjecture}
~
\begin{enumerate}
\item $\Compl\torldin g=\torldin\Compl g$;
\item $\Compl\torldout g=\torldout\Compl g$.
\end{enumerate}
\end{conjecture}
Note that the above Galois connection between funcoids and reloids is a Galois surjection.
\begin{prop}
$\torldin g =
\max \setcond{ f \in \mathsf{RLD} }{ \tofcd f \sqsubseteq g } =
\max \setcond{ f \in \mathsf{RLD} }{ \tofcd f = g }$.
\end{prop}
\begin{proof}
By theorem~\ref{adj-max} and proposition~\ref{gal-eq}.
\end{proof}
\section{\label{fcd-rld}Funcoidal reloids}
\begin{defn}
\index{funcoidal reloid}I call \emph{funcoidal} such a reloid $\nu$
that
\begin{multline*}
\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp\nu\Rightarrow\\
\exists\mathcal{X}'\in\mathscr{F}(\Base(\mathcal{X}))\setminus\{\bot\},\mathcal{Y}'\in\mathscr{F}(\Base(\mathcal{Y}))\setminus\{\bot\}:\\
(\mathcal{X}'\sqsubseteq\mathcal{X}\land\mathcal{Y}'\sqsubseteq\mathcal{Y}\land\mathcal{X}'\times^{\mathsf{RLD}}\mathcal{Y}'\sqsubseteq\nu)
\end{multline*}
for every $\mathcal{X}\in\mathscr{F}(\Src\nu)$, $\mathcal{Y}\in\mathscr{F}(\Dst\nu)$.\end{defn}
\begin{rem}
See theorem~\ref{fcdal-bij} below for how they are bijectively related with funcoids (and thus named funcoidal).
\end{rem}
\begin{prop}
A reloid $\nu$ is funcoidal iff $x\times^{\mathsf{RLD}}y\nasymp\nu\Rightarrow x\times^{\mathsf{RLD}}y\sqsubseteq\nu$
for every atomic filter objects $x$ and $y$ on respective sets.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}] $x\times^{\mathsf{RLD}}y\nasymp\nu\Rightarrow\exists\mathcal{X}'\in\atoms x,\mathcal{Y}'\in\atoms y:\mathcal{X}'\times^{\mathsf{RLD}}\mathcal{Y}'\sqsubseteq\nu\Rightarrow x\times^{\mathsf{RLD}}y\sqsubseteq\nu$.
\item [{$\Leftarrow$}] ~
\begin{multline*}
\mathcal{X}\times^{\mathsf{RLD}}\mathcal{Y}\nasymp\nu\Rightarrow\\
\exists x\in\atoms\mathcal{X},y\in\atoms\mathcal{Y}:x\times^{\mathsf{RLD}}y\nasymp\nu\Rightarrow\\
\exists x\in\atoms\mathcal{X},y\in\atoms\mathcal{Y}:x\times^{\mathsf{RLD}}y\sqsubseteq\nu\Rightarrow\\
\exists\mathcal{X}'\in\mathscr{F}(\Base(\mathcal{X}))\setminus\{\bot\},\mathcal{Y}'\in\mathscr{F}(\Base(\mathcal{Y}))\setminus\{\bot\}:\\
(\mathcal{X}'\sqsubseteq\mathcal{X}\land\mathcal{Y}'\sqsubseteq\mathcal{Y}\land\mathcal{X}'\times^{\mathsf{RLD}}\mathcal{Y}'\sqsubseteq\nu).
\end{multline*}
\end{description}
\end{proof}
\begin{prop}
\[
\torldin\tofcd f=\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(\Src\nu)},b\in\atoms^{\mathscr{F}(\Dst\nu)},a\times^{\mathsf{RLD}}b\nasymp f}.
\]
\end{prop}
\begin{proof}
~
\begin{align*}
\torldin\tofcd f & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(\Src\nu)},b\in\atoms^{\mathscr{F}(\Dst\nu)},a\times^{\mathsf{FCD}}b\sqsubseteq\tofcd f} & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(\Src\nu)},b\in\atoms^{\mathscr{F}(\Dst\nu)},a\suprel{\tofcd f}b} & =\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}b}{a\in\atoms^{\mathscr{F}(\Src\nu)},b\in\atoms^{\mathscr{F}(\Dst\nu)},a\times^{\mathsf{RLD}}b\nasymp f}.
\end{align*}
\end{proof}
\begin{defn}
I call $\torldin\tofcd f$ \emph{funcoidization} of a reloid $f$.\end{defn}
\begin{lem}
$\torldin\tofcd f$ is funcoidal for every reloid $f$.\end{lem}
\begin{proof}
$x\times^{\mathsf{RLD}}y\nasymp\torldin\tofcd f\Rightarrow x\times^{\mathsf{RLD}}y\sqsubseteq\torldin\tofcd f$
for atomic filters~$x$ and~$y$.\end{proof}
\begin{thm}\label{fcdal-bij}
$\torldin$ is a bijection from $\mathsf{FCD}(A,B)$ to the set of
funcoidal reloids from $A$ to $B$. The reverse bijection is given by $\tofcd$.\end{thm}
\begin{proof}
Let $f\in\mathsf{FCD}(A,B)$. Prove that $\torldin f$ is funcoidal.
Really $\torldin f=\torldin\tofcd\torldin f$ and thus we can use
the lemma stating that it is funcoidal.
It remains to prove $\torldin\tofcd f=f$ for a funcoidal reloid $f$.
($\tofcd\torldin g=g$ for every funcoid $g$ is already proved above.)
\begin{align*}
\torldin\tofcd f & =\\
\bigsqcup\setcond{x\times^{\mathsf{RLD}}y}{x\in\atoms^{\mathscr{F}(\Src f)},y\in\atoms^{\mathscr{F}(\Dst f)},x\times^{\mathsf{RLD}}y\nasymp f} & =\\
\bigsqcup\setcond{p\in\atoms(x\times^{\mathsf{RLD}}y)}{x\in\atoms^{\mathscr{F}(\Src f)},y\in\atoms^{\mathscr{F}(\Dst f)},x\times^{\mathsf{RLD}}y\nasymp f} & =\\
\bigsqcup\setcond{p\in\atoms(x\times^{\mathsf{RLD}}y)}{x\in\atoms^{\mathscr{F}(\Src f)},y\in\atoms^{\mathscr{F}(\Dst f)},x\times^{\mathsf{RLD}}y\sqsubseteq f} & =\\
\bigsqcup\atoms f=f.
\end{align*}
\end{proof}
\begin{cor}
Funcoidal reloids are convex.\end{cor}
\begin{proof}
Every $\torldin f$ is obviously convex.\end{proof}
\begin{thm}\label{rldin-dist}
$\torldin(g\circ f)=\torldin g\circ\torldin f$ for every composable
funcoids $f$ and $g$.\end{thm}
\begin{proof}
~
\begin{multline*}
\torldin g\circ\torldin f=\text{(corollary \ref{rld-comp-at})}=\\
\bigsqcup^{\mathsf{RLD}}\setcond{G\circ F}{F\in\atoms\torldin f,G\in\atoms\torldin g}
\end{multline*}
Let $F$ be an atom of the poset $\mathsf{RLD}(\Src f,\Dst f)$.
\begin{multline*}
F\in\atoms\torldin f\Rightarrow\dom F\times^{\mathsf{RLD}}\im F\nasymp\torldin f\Rightarrow\\
\text{(because \ensuremath{\torldin f} is a funcoidal reloid)}\Rightarrow\\
\dom F\times^{\mathsf{RLD}}\im F\sqsubseteq\torldin f
\end{multline*}
but $\dom F\times^{\mathsf{RLD}}\im F\sqsubseteq\torldin f\Rightarrow F\sqsubseteq\torldin f$
is obvious.
So
\begin{multline*}
F\in\atoms\torldin f\Leftrightarrow\dom F\times^{\mathsf{RLD}}\im F\sqsubseteq\torldin f\Rightarrow\\
\tofcd(\dom F\times^{\mathsf{RLD}}\im F)\sqsubseteq\tofcd\torldin f\Leftrightarrow\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f.
\end{multline*}
But
\begin{multline*}
\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f\Rightarrow\torldin(\dom F\times^{\mathsf{FCD}}\im F)\sqsubseteq\torldin f\Leftrightarrow\\
\dom F\times^{\mathsf{RLD}}\im F\sqsubseteq\torldin f.
\end{multline*}
So $F\in\atoms\torldin f\Leftrightarrow\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f$.
Let $F\in\atoms\torldin f$, $G\in\atoms\torldin g$. Then $\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f$ and $\dom G\times^{\mathsf{FCD}}\im G\sqsubseteq g$.
Provided that $\im F\nasymp\dom G$, we have:
\begin{multline*}
\dom F\times^{\mathsf{RLD}}\im G=(\dom G\times^{\mathsf{RLD}}\im G)\circ(\dom F\times^{\mathsf{RLD}}\im F)=\\
\bigsqcup^{\mathsf{RLD}}\setcond{G'\circ F'}{F'\in\atoms(\dom F\times^{\mathsf{RLD}}\im F),G'\in\atoms(\dom G\times^{\mathsf{RLD}}\im G)}\sqsubseteq\text{ (*)}\\
\bigsqcup^{\mathsf{RLD}}\setcond{G'\circ F'}{
\begin{aligned}[l]
&F'\in\atoms^{\mathsf{RLD}(\Src F,\Dst F)},G'\in\atoms^{\mathsf{RLD}(\Src G,\Dst G)},\\
&F'\sqsubseteq\torldin f,G'\sqsubseteq\torldin g
\end{aligned}
}=\\
\bigsqcup^{\mathsf{RLD}}\setcond{G'\circ F'}{F'\in\atoms\torldin f,G'\in\atoms\torldin g}=\torldin g\circ\torldin f.
\end{multline*}
(*) $F'\in\atoms(\dom F\times^{\mathsf{RLD}}\im F)$ and $\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f$ implies $\dom F'\times^{\mathsf{FCD}}\im F'\sqsubseteq f$;
thus $\dom F'\times^{\mathsf{RLD}}\im F'\sqsubseteq \torldin f$ and thus $F'\sqsubseteq \torldin f$. Likewise for~$G$ and $G'$.
Thus $\torldin g\circ\torldin f\sqsupseteq\bigsqcup^{\mathsf{RLD}}\setcond{\dom F\times^{\mathsf{RLD}}\im G}{F\in\atoms\torldin f,G\in\atoms\torldin g,\im F\nasymp\dom G}$.
But
\begin{multline*}
\torldin g\circ\torldin f\sqsubseteq\bigsqcup^{\mathsf{RLD}}\setcond{(\dom G\times^{\mathsf{RLD}}\im G)\circ(\dom F\times^{\mathsf{RLD}}\im F)}{F\in\atoms\torldin f,G\in\atoms\torldin g}
=\\
\bigsqcup^{\mathsf{RLD}}\setcond{\dom F\times^{\mathsf{RLD}}\im G}{F\in\atoms\torldin f,G\in\atoms\torldin g,\im F\nasymp\dom G}.
\end{multline*}
Thus
\begin{multline*}
\torldin g\circ\torldin f=\\
\bigsqcup^{\mathsf{RLD}}\setcond{\dom F\times^{\mathsf{RLD}}\im G}{F\in\atoms\torldin f,G\in\atoms\torldin g,\im F\nasymp\dom G}=\\
\bigsqcup^{\mathsf{RLD}}\setcond{\dom F\times^{\mathsf{RLD}}\im G}{
\begin{aligned}&F\in\atoms^{\mathsf{RLD}(\Src f,\Dst f)},G\in\atoms^{\mathsf{RLD}(\Dst f,\Dst g)},\\&\dom F\times^{\mathsf{FCD}}\im F\sqsubseteq f,\dom G\times^{\mathsf{FCD}}\im G\sqsubseteq g,\im F\nasymp\dom G\end{aligned}}.
\end{multline*}
But
\begin{multline*}
\torldin(g\circ f)=
\bigsqcup\setcond{a\times^{\mathsf{RLD}}c}{a\times^{\mathsf{FCD}}c\in\atoms(g\circ f)}=\text{(proposition~\ref{fcd-at-comp})}=\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}c}{
\begin{aligned}
&a\in\mathscr{F}(\Src f),c\in\mathscr{F}(\Dst g),\\
&\exists b\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\in\atoms f\land b\times^{\mathsf{FCD}}c\in\atoms g)
\end{aligned}
}=\\
\bigsqcup\setcond{a\times^{\mathsf{RLD}}c}{
\begin{aligned}
&a\in\mathscr{F}(\Src f),c\in\mathscr{F}(\Dst g),\\
&\exists b_0,b_1\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\in\atoms f\land b\times^{\mathsf{FCD}}c\in\atoms g\land b_0\nasymp b_1)
\end{aligned}
}.
\end{multline*}
Now it becomes obvious that $\torldin g\circ\torldin f=\torldin(g\circ f)$.
\end{proof}
\section{Complete funcoids and reloids}
For the proof below assume
\[
\theta=\left(\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})\mapsto\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{FCD}}\rsupfun f@\{x\})\right)
\]
(where $f$ ranges the set of complete funcoids).
\begin{lem}
$\theta$ is a bijection from complete reloids into complete funcoids.\end{lem}
\begin{proof}
Theorems~\ref{complfcd-rep} and~\ref{complrld-rep}.\end{proof}
\begin{lem}
$\tofcd g=\theta g$ for every complete reloid~$g$.\end{lem}
\begin{proof}
Really, $g=\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})$
for a complete reloid~$g$ and thus
\begin{multline*}
\tofcd g=\bigsqcup_{x\in\Src f}\tofcd(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})=\\
\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{FCD}}\rsupfun f@\{x\})=\theta g.
\end{multline*}
\end{proof}
\begin{lem}
$\torldout f=\theta^{-1}f$ for every complete funcoid~$f$.\end{lem}
\begin{proof}
We have $f=\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{FCD}}\rsupfun f@\{x\})$.
We need to prove $\torldout f=\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})$.
Really, $\torldout f\sqsupseteq\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})$.
It remains to prove that $\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})\sqsupseteq\torldout f$.
Let $L\in\up\bigsqcup_{x\in\Src f}(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\})$.
We will prove $L\in\up\torldout f$.
We have
\[
L\in\bigcap_{x\in\Src f}\up(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\}).
\]
$\rsupfun{L}\{x\} = G(x)$ for some $G(x)\in\up\rsupfun f@\{x\}$ (because
$L\in\up(\uparrow^{\Src f}\{x\}\times^{\mathsf{RLD}}\rsupfun f@\{x\}$).
Thus $L=G\in\up f$ (because $f$ is complete). Thus $L\in\up f$ and so $L\in\up\torldout f$.
\end{proof}
\begin{prop}
$\tofcd$ and $\torldout$ form mutually inverse bijections between
complete reloids and complete funcoids.\end{prop}
\begin{proof}
From two last lemmas.\end{proof}
\begin{thm}\label{cmpl-dia-thm}
The diagram at the figure~\ref{cmpl-dia} (with the ``unnamed''
arrow from $\mathsf{ComplRLD}(A,B)$ to $\mathscr{F}(B)^A$ \emph{defined} as the inverse isomorphism of its opposite arrow)
is a commutative diagram (in category $\mathbf{Set}$), every arrow
in this diagram is an isomorphism. Every cycle in this diagram is
an identity (therefore ``parallel'' arrows are mutually inverse).
The arrows preserve order.
\begin{figure}[ht]
\begin{tikzcd}[row sep=6cm, column sep=2.1cm]
& \mathscr{F}(B)^A
\arrow[rd, shift left, "G\mapsto\bigsqcup\setcond{\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}"]
\arrow[ld, shift left, "G\mapsto\bigsqcup\setcond{\{\alpha\}\times^{\mathsf{FCD}}G(\alpha)}{\alpha\in A}"] \\
\mathsf{ComplFCD}(A,B)
\arrow[ru, shift left, "f\mapsto(\alpha\mapsto\rsupfun{f}\{\alpha\})"]
\arrow[rr, shift left, "\torldout"]
& & \mathsf{ComplRLD}(A,B)
\arrow[lu, shift left]
\arrow[ll, shift left, "\tofcd"]
\end{tikzcd}
\caption{\label{cmpl-dia}}
\end{figure}
\end{thm}
\begin{proof}
It's proved above, that all morphisms (except the ``unnamed'' arrow,
which is the inverse morphism by definition) depicted on the diagram
are bijections and the depicted ``opposite'' morphisms are mutually
inverse.
That arrows preserve order is obvious.
It remains to apply lemma~\ref{three-loop-lem} (taking into account
that $\theta$ can be decomposed into $\left(G\mapsto\bigsqcup\setcond{\{\alpha\}\times^{\mathsf{RLD}}G(\alpha)}{\alpha\in A}\right)^{-1}$
and $G\mapsto\bigsqcup\setcond{\{\alpha\}\times^{\mathsf{FCD}}G(\alpha)}{\alpha\in A}$).\end{proof}
\begin{thm}
Composition of complete reloids is complete.\end{thm}
\begin{proof}
Let $f$, $g$ be complete reloids. Then $\tofcd(g\circ f)=\tofcd g\circ\tofcd f$.
Thus (because $\tofcd(g\circ f)$ is a complete funcoid) we have $g\circ f=\torldout(\tofcd g\circ\tofcd f)$,
but $\tofcd g\circ\tofcd f$ is a complete funcoid, thus $g\circ f$
is a complete reloid.\end{proof}
\begin{thm}
~
\begin{enumerate}
\item $\torldout g\circ\torldout f=\torldout(g\circ f)$ for composable
complete funcoids $f$ and $g$.
\item $\torldout g\circ\torldout f=\torldout(g\circ f)$ for composable
co-complete funcoids $f$ and $g$.
\end{enumerate}
\end{thm}
\begin{proof}
Let $f$, $g$ be composable complete funcoids.
$\tofcd(\torldout g\circ\torldout f)=\tofcd\torldout g\circ\tofcd\torldout f=g\circ f$.
Thus (taking into account that $\torldout g\circ\torldout f$ is complete)
we have $\torldout g\circ\torldout f=\torldout(g\circ f)$.
For co-complete funcoids it's dual.\end{proof}
\begin{prop}\label{up-f-filt}
If $f$ is a (co-)complete funcoid then $\up f$ is a filter.
\end{prop}
\begin{proof}
It is enough to consider the case if $f$ is complete.
We need to prove that $\forall F, G \in \up f : F \sqcap G \in
\up f$.
For every $F \in \mathbf{Rel} (\Src f , \Dst f)$ we
have
$F \in \up f \Leftrightarrow F \sqsupseteq f \Leftrightarrow \langle F
\rangle^{\ast} \{ x \} \sqsupseteq \rsupfun{f} \{ x \}$.
Thus
\begin{multline*}
F, G \in \up f \Rightarrow \rsupfun{F} \{ x \}
\sqsupseteq \rsupfun{f} \{ x \} \wedge \rsupfun{G}
\{ x \} \sqsupseteq \rsupfun{f} \{ x \} \Rightarrow \\ \langle F
\sqcap G \rangle^{\ast} \{ x \} = \rsupfun{F} \{ x \} \sqcap
\rsupfun{G} \{ x \} \sqsupseteq \rsupfun{f} \{ x
\} \Rightarrow F \sqcap G \in \up f.
\end{multline*}
That $\up f$ is nonempty and up-directed is obvious.
\end{proof}
\begin{cor}
~
\begin{enumerate}
\item If $f$ is a (co-)complete funcoid then $\up f = \up
\torldout f$.
\item If $f$ is a (co-)complete reloid then $\up f = \up
\tofcd f$.
\end{enumerate}
\end{cor}
\begin{proof}
By order isomorphism, it is enough to prove the first.
Because $\up f$ is a filter, by properties of generalized filter bases
we have $F \in \up \torldout f
\Leftrightarrow \exists g \in \up f : F \sqsupseteq g \Leftrightarrow
F \in \up f$.
\end{proof}
\section{Properties preserved by relationships}
\begin{prop}
$\tofcd f$ is reflexive iff $f$ is reflexive (for every
endoreloid~$f$).
\end{prop}
\begin{proof}
\begin{multline*}
\text{$f$ is reflexive} \Leftrightarrow
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq f \Leftrightarrow
\forall F \in \up f : 1^{\mathbf{Rel}}_{\Ob f}
\sqsubseteq F \Leftrightarrow \\ 1^{\mathbf{Rel}}_{\Ob f}
\sqsubseteq \bigsqcap^{\mathsf{FCD}} \up f \Leftrightarrow
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq \tofcd f
\Leftrightarrow \text{$\tofcd f$ is reflexive}.
\end{multline*}
\end{proof}
\begin{prop}
$(\mathsf{RLD})_{\operatorname{out}} f$ is reflexive iff $f$ is reflexive
(for every endofuncoid $f$).
\end{prop}
\begin{proof}
\begin{multline*}
\text{$f$ is reflexive} \Leftrightarrow
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq f \Leftrightarrow
\text{(corollary~\ref{fcd-filtered})} \Leftrightarrow \\ \forall F \in \up f :
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq F \Leftrightarrow
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq
\bigsqcap^{\mathsf{RLD}} \up f \Leftrightarrow \\
1^{\mathbf{Rel}}_{\Ob f} \sqsubseteq
(\mathsf{RLD})_{\operatorname{out}} f \Leftrightarrow
\text{$(\mathsf{RLD})_{\operatorname{out}}f$ is reflexive}.
\end{multline*}
\end{proof}
\begin{prop}
$(\mathsf{RLD})_{\operatorname{in}} f$ is reflexive iff $f$ is reflexive (for
every endofuncoid~$f$).
\end{prop}
\begin{proof}
$(\mathsf{RLD})_{\operatorname{in}} f$ is reflexive iff
$\tofcd (\mathsf{RLD})_{\operatorname{in}} f$ if reflexive iff
$f$ is reflexive.
\end{proof}
\begin{obvious}
$\tofcd$, $(\mathsf{RLD})_{\operatorname{in}}$, and
$(\mathsf{RLD})_{\operatorname{out}}$ preserve symmetry of the argument funcoid
or reloid.\end{obvious}