-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-funcoids-are-filters.tex
1006 lines (864 loc) · 44.5 KB
/
chap-funcoids-are-filters.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Funcoids are filters}\label{fcd-filters}
The motto of this chapter is: ``Funcoids are filters on a (boolean) lattice.''
\section{Rearrangement of collections of sets}
Let $Q$ be a set of sets.
Let $\equiv$ be the relation on $\bigcup Q$ defined by the formula
\[
a\equiv b\Leftrightarrow\forall X\in Q:(a\in X\Leftrightarrow b\in X).
\]
\begin{prop}
$\equiv$ is an equivalence relation on $\bigcup Q$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{Reflexivity}] Obvious.
\item [{Symmetry}] Obvious.
\item [{Transitivity}] Let $a\equiv b\wedge b\equiv c$. Then $a\in X\Leftrightarrow b\in X\Leftrightarrow c\in X$
for every $X\in Q$. Thus $a\equiv c$.
\end{description}
\end{proof}
\begin{defn}
\emph{Rearrangement} $\mathfrak{R}(Q)$ of $Q$ is the set of equivalence
classes of $\bigcup Q$ for $\equiv$.\end{defn}
\begin{obvious}
$\bigcup\mathfrak{R}(Q)=\bigcup Q$.
\end{obvious}
\begin{obvious}
$\emptyset\notin\mathfrak{R}(Q)$.\end{obvious}
\begin{lem}
$\card\mathfrak{R}(Q)\leq2^{\card Q}$.\end{lem}
\begin{proof}
Having an equivalence class $C$, we can find the set $f\in\subsets Q$
of all $X\in Q$ such that $a\in X$, for every $a\in C$.
\[
b\equiv a\Leftrightarrow\forall X\in Q:(a\in X\Leftrightarrow b\in X)\Leftrightarrow\forall X\in Q:(X\in f\Leftrightarrow b\in X).
\]
So $C=\setcond{b\in\bigcup Q}{b\equiv a}$ can be restored knowing
$f$. Consequently there are no more than $\card\subsets Q=2^{\card Q}$
classes.\end{proof}
\begin{cor}
If $Q$ is finite, then $\mathfrak{R}(Q)$ is finite.\end{cor}
\begin{prop}
If $X\in Q$, $Y\in\mathfrak{R}(Q)$ then $X\cap Y\neq\emptyset\Leftrightarrow Y\subseteq X$.\end{prop}
\begin{proof}
Let $X\cap Y\neq\emptyset$ and $x\in X\cap Y$. Then
\[
y\in Y\Leftrightarrow x\equiv y\Leftrightarrow\forall X'\in Q:(x\in X'\Leftrightarrow y\in X')\Rightarrow(x\in X\Leftrightarrow y\in X)\Leftrightarrow y\in X
\]
for every $y$. Thus $Y\subseteq X$.
$Y\subseteq X\Rightarrow X\cap Y\neq\emptyset$ because $Y\neq\emptyset$.\end{proof}
\begin{prop}
If $\emptyset\neq X\in Q$ then there exists $Y\in\mathfrak{R}(Q)$
such that $Y\subseteq X\wedge X\cap Y\neq\emptyset$.\end{prop}
\begin{proof}
Let $a\in X$. Then
\begin{multline*}
[a]=\setcond{b\in\bigcup Q}{\forall X'\in Q:(a\in X'\Leftrightarrow b\in X')}\subseteq\\
\setcond{b\in\bigcup Q}{a\in X\Leftrightarrow b\in X} = \setcond{b\in\bigcup Q}{b\in X}=X.
\end{multline*}
But $[a]\in\mathfrak{R}(Q)$.
$X\cap Y\neq\emptyset$ follows from $Y\subseteq X$ by the previous
proposition.\end{proof}
\begin{prop}
If $X\in Q$ then $X=\bigcup(\mathfrak{R}(Q)\cap\subsets X)$.\end{prop}
\begin{proof}
$\bigcup(\mathfrak{R}(Q)\cap\subsets X)\subseteq X$ is obvious.
Let $x\in X$. Then there is $Y\in\mathfrak{R}(Q)$ such that $x\in Y$.
We have $Y\subseteq X$ that is $Y\in\subsets X$ by a proposition
above. So $x\in Y$ where $Y\in\mathfrak{R}(Q)\cap\subsets X$ and
thus $x\in\bigcup(\mathfrak{R}(Q)\cap\subsets X)$. We have $X\subseteq\bigcup(\mathfrak{R}(Q)\cap\subsets X)$.
\end{proof}
\section{Finite unions of Cartesian products}
Let $A$, $B$ be sets.
I will denote $\overline{X}=A\setminus X$.
Let denote $\Gamma(A,B)$ the set of all finite unions $X_{0}\times Y_{0}\cup\ldots\cup X_{n-1}\times Y_{n-1}$
of Cartesian products, \ where $n\in\mathbb{N}$ and $X_{i}\in\subsets A$,
$Y_{i}\in\subsets B$ for every $i=0,\ldots,n-1$.
\begin{prop}
The following sets are pairwise equal:
\begin{enumerate}
\item \label{gamma-gamma}$\Gamma(A,B)$;
\item \label{gamma-YX}the set of all sets of the form $\bigcup_{X\in S}(X\times Y_{X})$
where $S$ are finite collections on $A$ and $Y_{X}\in\subsets B$
for every $X\in S$;
\item \label{gamma-YXpart}the set of all sets of the form $\bigcup_{X\in S}(X\times Y_{X})$
where $S$ are finite partitions of $A$ and $Y_{X}\in\subsets B$
for every $X\in S$;
\item \label{gamma-sigma}the set of all finite unions $\bigcup_{(X,Y)\in\sigma}(X\times Y)$
where $\sigma$ is a relation between a partition of $A$ and a partition
of $B$ (that is $\dom\sigma$ is a partition of $A$ and $\im\sigma$
is a partition of $B$).
\item \label{gamma-lineX}the set of all finite intersections $\bigcap_{i=0,\ldots,n-1}\left(X_{i}\times Y_{i}\cup\overline{X_{i}}\times B\right)$
where $n\in\mathbb{N}$ and $X_{i}\in\subsets A$, $Y_{i}\in\subsets B$
for every $i=0,\ldots,n-1$.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item [{\ref{gamma-gamma}$\supseteq$\ref{gamma-YX},~\ref{gamma-YX}$\supseteq$\ref{gamma-YXpart}}] Obvious.
\item [{\ref{gamma-gamma}$\subseteq$\ref{gamma-YX}}] Let $Q\in\Gamma(A,B)$.
Then $Q=X_{0}\times Y_{0}\cup\ldots\cup X_{n-1}\times Y_{n-1}$. Denote
$S=\{X_{0},\ldots,X_{n-1}\}$. We have $Q=\bigcup_{X'\in S}\left(X'\times\bigcup_{i=0,\dots,n-1}\setcond{Y_{i}}{X_{i}=X'}\right)\in\text{\ref{gamma-YX}}$.
\item [{\ref{gamma-YX}$\subseteq$\ref{gamma-YXpart}}] Let $Q=\bigcup_{X\in S}(X\times Y_{X})$
where $S$ is a finite collection on $A$ and $Y_{X}\in\subsets B$
for every $X\in S$. Let
\[
P=\bigcup_{X'\in\mathfrak{R}(S)}\left(X'\times\bigcup_{X\in S}\setcond{Y_{X}}{\exists X\in S:X'\subseteq X}\right).
\]
To finish the proof let's show $P=Q$.
$\langle P\rangle^{\ast}\{x\}=\bigcup_{X\in S}\setcond{Y_{X}}{\exists X\in S:X'\subseteq X}$
where $x\in X'$.
Thus $\langle P\rangle^{\ast}\{x\}=\bigcup\setcond{Y_{X}}{\exists X\in S:x\in X}=\langle Q\rangle^{\ast}\{x\}$.
So $P=Q$.
\item [{\ref{gamma-sigma}$\subseteq$\ref{gamma-YXpart}}] $\bigcup_{(X,Y)\in\sigma}(X\times Y)=\bigcup_{X\in\dom\sigma}\left(X\times\bigcup\setcond{Y\in\subsets B}{(X,Y)\in\sigma}\right)\in\text{\text{\ref{gamma-YXpart}}}$.
\item [{\ref{gamma-YXpart}$\subseteq$\ref{gamma-sigma}}]
\begin{multline*}
\bigcup_{X\in S}(X\times Y_{X})=\bigcup_{X\in S}\left(X\times\bigcup\left(\mathfrak{R}\left(\setcond{Y_{X}}{X\in S}\right)\cap\subsets Y_{X}\right)\right)=\\
\bigcup_{X\in S}\left(X\times\bigcup\setcond{Y'\in\mathfrak{R}\left(\setcond{Y_{X}}{X\in S}\right)}{Y'\subseteq Y_{X}}\right)=\\
\bigcup_{X\in S}\left(X\times\bigcup\setcond{Y'\in\mathfrak{R}\left(\setcond{Y_{X}}{X\in S}\right)}{(X,Y')\in\sigma}\right)=\bigcup_{(X,Y)\in\sigma}(X\times Y)
\end{multline*}
where $\sigma$ is a relation between $S$ and $\mathfrak{R}\left(\setcond{Y_{X}}{X\in S}\right)$,
and $(X,Y')\in\sigma\Leftrightarrow Y'\subseteq Y_{X}$.
\item [{\ref{gamma-lineX}$\subseteq$\ref{gamma-gamma}}] Obvious.
\item [{\ref{gamma-YXpart}$\subseteq$\ref{gamma-lineX}}] Let $Q=\bigcup_{X\in S}(X\times Y_{X})=\bigcup_{i=0,\ldots,n-1}(X_{i}\times Y_{i})$
for a partition $S=\{X_{0},\ldots,X_{n-1}\}$ of $A$. Then $Q=\bigcap_{i=0,\ldots,n-1}\left(X_{i}\times Y_{i}\cup\overline{X_{i}}\times B\right)$.
\end{description}
\end{proof}
\begin{xca}
Formulate the duals of these sets.\end{xca}
\begin{prop}
$\Gamma(A,B)$ is a boolean lattice, a sublattice of the lattice $\subsets(A\times B)$.\end{prop}
\begin{proof}
That it's a sublattice is obvious. That it has complement, is also
obvious. Distributivity follows from distributivity of $\subsets(A\times B)$.
\end{proof}
\section{Before the diagram}
Next we will prove the below theorem \ref{fcd-diagram} (the theorem
with a diagram). First we will present parts of this theorem as several
lemmas, and then then state a statement about the diagram which concisely
summarizes the lemmas (and their easy consequences).
Below for simplicity we will equate reloids with their graphs (that
is with filters on binary cartesian products).
\begin{obvious}
$\up^{\Gamma(\Src f,\Dst f)}f=(\up f)\cap\Gamma$ for every reloid
$f$.\end{obvious}
\begin{conjecture}
$\upuparrows^{\mathfrak{F}(\mathfrak{B})}\up^{\mathfrak{A}}\mathcal{X}$
is not a filter for some filter $\mathcal{X}\in\mathfrak{F}\Gamma(A,B)$
for some sets $A$, $B$.\end{conjecture}
\begin{rem}
About this conjecture see also:
\begin{itemize}
\item \href{http://goo.gl/DHyuuU}{http://goo.gl/DHyuuU}
\item \href{http://goo.gl/4a6wY6}{http://goo.gl/4a6wY6}
\end{itemize}
\end{rem}
\begin{lem}
\label{faf-bij}Let $A$, $B$ be sets. The following are mutually
inverse order isomorphisms between $\mathfrak{F}\Gamma(A,B)$ and
$\mathsf{FCD}(A,B)$:
\begin{enumerate}
\item $\mathcal{A}\mapsto\bigsqcap^{\mathsf{FCD}}\up\mathcal{A}$;
\item $f\mapsto\up^{\Gamma(A,B)}f$.
\end{enumerate}
\end{lem}
\begin{proof}
Let's prove that $\up^{\Gamma(A,B)}f$ is a filter for every funcoid
$f$. We need to prove that $P\cap Q\in\up f$ whenever
\[
P=\bigcap_{i=0,\ldots,n-1}\left(X_{i}\times Y_{i}\cup\overline{X_{i}}\times B\right)\quad\text{and}\quad Q=\bigcap_{j=0,\ldots,m-1}\left(X'_{j}\times Y'_{j}\cup\overline{X'_{j}}\times B\right).
\]
This follows from $P\in\up f\Leftrightarrow\forall i\in0,\ldots,n-1:\supfun fX_{i}\subseteq Y_{i}$
and likewise for $Q$, so having $\supfun f(X_{i}\cap X'_{j})\subseteq Y_{i}\cap Y'_{j}$
for every $i=0,\ldots,n-1$ and $j=0,\ldots,m-1$. From this it follows
\[
((X_{i}\cap X'_{j})\times(Y_{i}\cap Y'_{j}))\cup\left(\overline{X_{i}\cap X'_{j}}\times B\right)\supseteq f
\]
and thus $P\cap Q\in\up f$.
Let $\mathcal{A}$, $\mathcal{B}$ be filters on $\Gamma$. Let $\bigsqcap^{\mathsf{FCD}}\up\mathcal{A}=\bigsqcap^{\mathsf{FCD}}\up\mathcal{B}$.
We need to prove $\mathcal{A}=\mathcal{B}$. (The rest follows from
proof of the lemma~\ref{fcd-rep}). We have:
\begin{align*}
\mathcal{A}=\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B\in\up\mathcal{A}}{X\in\subsets A,Y\in\subsets B} & =\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\exists P\in\up\mathcal{A}:P\subseteq X\times Y\cup\overline{X}\times B} & =\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\exists P\in\up\mathcal{A}:\rsupfun PX\subseteq Y} & =\text{(*)}\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\bigsqcap\setcond{\rsupfun PX}{X\in\up\mathcal{A}}\sqsubseteq Y} & =\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\bigsqcap\setcond{\rsupfun PX}{X\in\up\bigsqcap^{\mathsf{RLD}}\up\mathcal{A}}\sqsubseteq Y} & =\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\left\langle \tofcd\bigsqcap^{\mathsf{RLD}}\up\mathcal{A}\right\rangle X\sqsubseteq Y} & =\text{(**)}\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\left\langle \bigsqcap^{\mathsf{FCD}}\up\bigsqcap^{\mathsf{RLD}}\up\mathcal{A}\right\rangle X\sqsubseteq Y} & =\\
\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\left\langle \bigsqcap^{\mathsf{FCD}}\up\mathcal{A}\right\rangle X\sqsubseteq Y}.
\end{align*}
({*}) by properties of generalized filter bases, because $\setcond{\rsupfun PX}{P\in\up\mathcal{A}}$
is a filter base.
({*}{*}) by theorem \ref{fcd-as-meet}.
Similarly
\[
\mathcal{B}=\bigsqcap^{\mathsf{FCD}}\setcond{X\times Y\cup\overline{X}\times B}{X\in\subsets A,Y\in\subsets B,\left\langle \bigsqcap^{\mathsf{FCD}}\up\mathcal{B}\right\rangle X\sqsubseteq Y}.
\]
Thus $\mathcal{A}=\mathcal{B}$.\end{proof}
\begin{prop}
$g\circ f\in\Gamma(A,C)$ if $f\in\Gamma(A,B)$ and $g\in\Gamma(B,C)$
for some sets $A$, $B$, $C$.\end{prop}
\begin{proof}
Because composition of Cartesian products is a Cartesian product.\end{proof}
\begin{defn}
$g\circ f=\bigsqcap^{\mathfrak{F}\Gamma(A,C)}\setcond{G\circ F}{F\in\up f,G\in\up g}$
for $f\in\mathfrak{F}\Gamma(A,B)$ and $g\in\mathfrak{F}\Gamma(B,C)$
(for every sets $A$, $B$, $C$).
\end{defn}
We define $f^{-1}$ for $f\in\mathfrak{F}\Gamma(A,B)$ similarly to
$f^{-1}$ for reloids and similarly derive the formulas:
\begin{enumerate}
\item $(f^{-1})^{-1}=f$;
\item $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.
\end{enumerate}
\section{Associativity over composition}
\begin{lem}
\label{uparr-gamma-comp}$\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,C)}(g\circ f)=\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}g\right)\circ\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}\right)$
for every $f\in\mathfrak{F}(\Gamma(A,B))$, $g\in\mathfrak{F}(\Gamma(B,C))$
(for every sets $A$, $B$, $C$).\end{lem}
\begin{proof}
If $K\in\up\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,C)}(g\circ f)$ then
$K\supseteq G\circ F$ for some $F\in f$, $G\in g$. But $F\in\up^{\Gamma(A,B)}f$,
thus
\[
F\in\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,B)}f
\]
and similarly
\[
G\in\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}g.
\]
So we have
\[
K\supseteq G\circ F\in\up\left(\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}g\right)\circ\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,B)}f\right)\right).
\]
Let now
\[
K\in\up\left(\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}g\right)\circ\left(\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,B)}f\right)\right).
\]
Then there exist $F\in\up\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,B)}f$
and $G\in\up\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(B,C)}g$ such that
$K\supseteq G\circ F$. By properties of generalized filter bases
we can take $F\in\up^{\Gamma(A,B)}f$ and $G\in\up^{\Gamma(B,C)}g$.
Thus $K\in\up^{\Gamma(A,C)}(g\circ f)$ and so $K\in\up\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(A,C)}(g\circ f)$.\end{proof}
\begin{lem}
$\torldin X=X$ for $X\in\Gamma(A,B)$.\end{lem}
\begin{proof}
$X=X_{0}\times Y_{0}\cup\ldots\cup X_{n}\times Y_{n}=(X_{0}\times^{\mathsf{FCD}}Y_{0})\sqcup^{\mathsf{FCD}}\ldots\sqcup^{\mathsf{FCD}}(X_{n}\times^{\mathsf{FCD}}Y_{n})$.
\begin{multline*}
\torldin X=\\
\torldin(X_{0}\times^{\mathsf{FCD}}Y_{0})\sqcup^{\mathsf{RLD}}\ldots\sqcup^{\mathsf{RLD}}\torldin(X_{n}\times^{\mathsf{FCD}}Y)=\\
(X_{0}\times^{\mathsf{RLD}}Y_{0})\sqcup^{\mathsf{RLD}}\ldots\sqcup^{\mathsf{RLD}}(X_{n}\times^{\mathsf{RLD}}Y_{n})=\\
X_{0}\times Y_{0}\cup\ldots\cup X_{n}\times Y_{n}=X.
\end{multline*}
\end{proof}
\begin{lem}
\label{rld-in-fcd-meet}$\bigsqcap^{\mathsf{RLD}} f=\torldin\bigsqcap^{\mathsf{FCD}} f$
for every filter $f\in\mathfrak{F}\Gamma(A,B)$.\end{lem}
\begin{proof}
~
\[
\torldin\bigsqcap^{\mathsf{FCD}} f=\bigsqcap^{\mathsf{RLD}}\rsupfun{\torldin} f=
\text{(by the previous lemma)}=\bigsqcap^{\mathsf{RLD}} f.
\]
\end{proof}
\begin{lem}
\label{rld-gamma-bij}~
\begin{enumerate}
\item \label{rld-gamma-bij-mu}$f\mapsto\bigsqcap^{\mathsf{RLD}}\up f$
and $\mathcal{A}\mapsto\Gamma(A,B)\cap\up\mathcal{A}$ are mutually
inverse bijections between $\mathfrak{F}\Gamma(A,B)$ and a subset
of reloids.
\item \label{rld-gamma-bij-comp}These bijections preserve composition.
\end{enumerate}
\end{lem}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{rld-gamma-bij-mu}}] That they are mutually inverse bijections
is obvious.
\item [{\ref{rld-gamma-bij-comp}}] ~
\begin{multline*}
\left(\bigsqcap^{\mathsf{RLD}}\up g\right)\circ\left(\bigsqcap^{\mathsf{RLD}}\up f\right)=\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in\bigsqcap^{\mathsf{RLD}}f,G\in\bigsqcap^{\mathsf{RLD}}g}=\\
\bigsqcap^{\mathsf{RLD}}\setcond{G\circ F}{F\in f,G\in g}=\bigsqcap^{\mathsf{RLD}}\bigsqcap^{\mathfrak{F}\Gamma(\Src f,\Dst g)}\setcond{G\circ F}{F\in f,G\in g}=\bigsqcap^{\mathsf{RLD}}(g\circ f).
\end{multline*}
So $\bigsqcap^{\mathsf{RLD}}$ preserves composition. That $\mathcal{A}\mapsto\Gamma(A,B)\cap\up\mathcal{A}$
preserves composition follows from properties of bijections.
\end{widedisorder}
\end{proof}
\begin{lem}
Let $A$, $B$, $C$ be sets.
\begin{enumerate}
\item $\left(\bigsqcap^{\mathsf{FCD}}\up g\right)\circ\left(\bigsqcap^{\mathsf{FCD}}\up f\right)=\bigsqcap^{\mathsf{FCD}}\up(g\circ f)$
for every $f\in\mathfrak{F}\Gamma(A,B)$, $g\in\mathfrak{F}\Gamma(B,C)$;
\item $(\up^{\Gamma(B,C)}g)\circ(\up^{\Gamma(A,B)}f)=\up^{\Gamma(A,B)}(g\circ f)$
for every funcoids $f\in\mathsf{FCD}(A,B)$ and $g\in\mathsf{FCD}(B:C)$.
\end{enumerate}
\end{lem}
\begin{proof}
It's enough to prove only the first formula, because of the bijection
from lemma~\ref{faf-bij}.
Really:
\begin{multline*}
\bigsqcap^{\mathsf{FCD}}\up(g\circ f)=\bigsqcap^{\mathsf{FCD}}\up\bigsqcap^{\mathsf{RLD}}\up(g\circ f)=\\
\bigsqcap^{\mathsf{FCD}}\up\left(\bigsqcap^{\mathsf{RLD}}\up g\circ\bigsqcap^{\mathsf{RLD}}\up f\right)=\tofcd\left(\bigsqcap^{\mathsf{RLD}}\up g\circ\bigsqcap^{\mathsf{RLD}}\up f\right)=\\
\left(\tofcd\bigsqcap^{\mathsf{RLD}}\up g\right)\circ\left(\tofcd\bigsqcap^{\mathsf{RLD}}\up f\right)=\\
\left(\bigsqcap^{\mathsf{FCD}}\up\bigsqcap^{\mathsf{RLD}}\up g\right)\circ\left(\bigsqcap^{\mathsf{FCD}}\up\bigsqcap^{\mathsf{RLD}}\up f\right)=\\
\left(\bigsqcap^{\mathsf{FCD}}\up g\right)\circ\left(\bigsqcap^{\mathsf{FCD}}\up f\right).
\end{multline*}
\end{proof}
\begin{cor}
$(h\circ g)\circ f=h\circ(g\circ f)$ for every $f\in\mathfrak{F}(\Gamma(A,B))$,
$g\in\mathfrak{F}\Gamma(B,C)$, $h\in\mathfrak{F}\Gamma(C,D)$ for
every sets $A$, $B$, $C$, $D$.\end{cor}
\begin{lem}
$\Gamma(A,B)\cap\GR f$ is a filter on the lattice $\Gamma(A,B)$
for every reloid $f\in\mathsf{RLD}(A,B)$.\end{lem}
\begin{proof}
That it is an upper set, is obvious. If $A,B\in\Gamma(A,B)\cap\GR f$
then $A,B\in\Gamma(A,B)$ and $A,B\in\GR f$. Thus $A\cap B\in\Gamma(A,B)\cap\GR f$.\end{proof}
\begin{prop}
If $Y\in\up\supfun f\mathcal{X}$ for a funcoid $f$ then there exists
$A\in\up\mathcal{X}$ such that $Y\in\up\langle f\rangle A$.\end{prop}
\begin{proof}
$Y\in\up\bigsqcap_{A\in\up a}^{\mathscr{F}}\supfun fA$. So by properties
of generalized filter bases, there exists $A\in\up a$ such that $Y\in\up\supfun fA$.\end{proof}
\begin{lem}
$\tofcd f=\bigsqcap^{\mathsf{FCD}}(\Gamma(A,B)\cap\GR f)$ for every
reloid $f\in\mathsf{RLD}(A,B)$.\end{lem}
\begin{proof}
Let $a$ be an an atomic filter object. We need to prove
\[
\supfun{\tofcd f}a=\supfun{\bigsqcap^{\mathsf{FCD}}(\Gamma(A,B)\cap\GR f)}a
\]
that is
\[
\supfun{\bigsqcap^{\mathsf{FCD}}\up f}a=\supfun{\bigsqcap^{\mathsf{FCD}}(\Gamma(A,B)\cap\GR f)}a
\]
that is
\[
\bigsqcap_{F\in\up f}^{\mathscr{F}}\supfun Fa=\bigsqcap_{F\in\Gamma(A,B)\cap\up f}^{\mathscr{F}}\supfun Fa.
\]
For this it's enough to prove that $Y\in\up\supfun Fa$ for some $F\in\up f$
implies $Y\in\up\supfun{F'}a$ for some $F'\in\Gamma(A,B)\cap\GR f$.
Let $Y\in\up\supfun Fa$. Then (proposition above) there exists $A\in\up a$
such that $Y\in\up\supfun FA$.
$Y\in\up\supfun{A\times^{\mathsf{FCD}}Y\sqcup\overline{A}\times^{\mathsf{FCD}}\top}a$;
$\supfun{A\times^{\mathsf{FCD}}Y\sqcup\overline{A}\times^{\mathsf{FCD}}\top}\mathcal{X}=Y\in\up\supfun F\mathcal{X}$
if $\bot\neq\mathcal{X}\sqsubseteq A$ and $\supfun{A\times^{\mathsf{FCD}}Y\sqcup\overline{A}\times^{\mathsf{FCD}}\top}\mathcal{X}=\top\in\up\langle F\rangle\mathcal{X}$
if $\mathcal{X}\nsqsubseteq A$.
Thus $A\times^{\mathsf{FCD}}Y\sqcup\overline{A}\times^{\mathsf{FCD}}\top\sqsupseteq F$.
So $A\times^{\mathsf{FCD}}Y\sqcup\overline{A}\times^{\mathsf{FCD}}\top$
is the sought for~$F'$.
\end{proof}
\section{The diagram}
\begin{thm}
\label{fcd-diagram}The diagram at the figure~\ref{gamma-dia} is
a commutative diagram (in category $\mathbf{Set}$), every arrow in
this diagram is an isomorphism. Every cycle in this diagram is an
identity (therefore ``parallel'' arrows are mutually inverse). The
arrows preserve order, composition, and reversal ($f\mapsto f^{-1}$).
\begin{figure}[ht]
\begin{tikzcd}[row sep=3cm, column sep=0.9cm]
& \text{funcoids}
\arrow[rd, shift left, "\up^\Gamma"]
\arrow[ld, shift left, "\torldin"] \\
\text{funcoidal reloids}
\arrow[ru, shift left, "\tofcd"]
\arrow[rr, shift left, "f\mapsto f\cap\Gamma"]
& & \text{filters on $\Gamma$}
\arrow[lu, shift left, "\bigsqcap^{\mathsf{FCD}}"]
\arrow[ll, shift left, "\bigsqcap^{\mathsf{RLD}}"]
\end{tikzcd}
\caption{\label{gamma-dia}}
\end{figure}
\end{thm}
\begin{proof}
First we need to show that $\bigsqcap^{\mathsf{RLD}}f$ is a funcoidal
reloid. But it follows from lemma~\ref{rld-in-fcd-meet}.
Next, we need to show that all morphisms depicted on the diagram are
bijections and the depicted ``opposite'' morphisms are mutually
inverse.
That $\tofcd$ and $\torldin$ are mutually inverse was proved above
in the book.
That $\bigsqcap^{\mathsf{RLD}}$ and $f\mapsto f\cap\Gamma$ are mutually
inverse was proved above.
That $\bigsqcap^{\mathsf{FCD}}$ and $\up^{\Gamma}$ are mutually
inverse was proved above.
That the morphisms preserve order and composition was proved above.
That they preserve reversal is obvious.
So it remains to apply lemma~\ref{three-loop-lem} (taking into account
lemma~\ref{rld-in-fcd-meet}).
\end{proof}
Another proof that $\tofcd\torldin f=f$ for every funcoid $f$:
\begin{proof}
For every filter $\mathcal{X}\in\mathscr{F}(\Src f)$ we have $\langle\tofcd\torldin f\rangle\mathcal{X}=\bigsqcap_{F\in\up\torldin f}^{\mathscr{F}}\supfun F\mathcal{X}=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}$.
Obviously $\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}\sqsupseteq\supfun f\mathcal{X}$.
So $\tofcd\torldin f\sqsupseteq f$.
Let $Y\in\up\supfun f\mathcal{X}$. Then (proposition above) there
exists $A\in\up\mathcal{X}$ such that $Y\in\up\langle f\rangle A$.
Thus $A\times Y\sqcup\overline{A}\times\top\in\up f$. So $\supfun{\tofcd\torldin f}\mathcal{X}=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}\sqsubseteq\supfun{A\times Y\sqcup\overline{A}\times\top}\mathcal{X}=Y$.
So $Y\in\up\supfun{\tofcd\torldin f}\mathcal{X}$ that
is $\supfun f\mathcal{X}\sqsupseteq\supfun{\tofcd\torldin f}\mathcal{X}$
that is $f\sqsupseteq\tofcd\torldin f$.\end{proof}
\section{Some additional properties}
\begin{prop}
For every funcoid $f\in\mathsf{FCD}(A,B)$ (for sets $A$, $B$):
\begin{enumerate}
\item $\dom f=\bigsqcap^{\mathscr{F}(A)}\langle\dom\rangle^{\ast}\up^{\Gamma(A,B)}f$;
\item $\im f=\bigsqcap^{\mathscr{F}(B)}\langle\im\rangle^{\ast}\up^{\Gamma(A,B)}f$.
\end{enumerate}
\end{prop}
\begin{proof}
Take $\setcond{X\times Y}{X\in\subsets A,Y\in\subsets B,X\times Y\supseteq f}\subseteq\up^{\Gamma(A,B)}f$.
I leave the rest reasoning as an exercise.\end{proof}
\begin{thm}
For every reloid $f$ and $\mathcal{X}\in\mathscr{F}(\Src f)$, $\mathcal{Y}\in\mathscr{F}(\Dst f)$:
\begin{enumerate}
\item \label{fcd-up-g-rel}$\mathcal{X}\mathrel{[\tofcd f]}\mathcal{Y}\Leftrightarrow\forall F\in\up^{\Gamma(\Src f,\Dst f)}f:\mathcal{X}\suprel F\mathcal{Y}$;
\item \label{fcd-up-g-fcd}$\langle\tofcd f\rangle\mathcal{X}=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{fcd-up-g-rel}}] ~
\begin{multline*}
\forall F\in\up^{\Gamma(\Src f,\Dst f)}f:\mathcal{X}\suprel F\mathcal{Y}\Leftrightarrow\\
\forall F\in\up^{\Gamma(\Src f,\Dst f)}f:(\mathcal{X}\times^{\mathsf{FCD}}\mathcal{Y})\sqcap F\ne\bot\Leftrightarrow\text{(*)}\\
(\mathcal{X}\times^{\mathsf{FCD}}\mathcal{Y})\sqcap \bigsqcap^{\mathsf{FCD}}\up^{\Gamma(\Src f,\Dst f)}f\ne\bot\Leftrightarrow\\
\mathcal{X}\suprel{\bigsqcap^{\mathsf{FCD}}\up^{\Gamma(\Src f,\Dst f)}f}\mathcal{Y}\Leftrightarrow\mathcal{X}\suprel{\tofcd f}\mathcal{Y}.
\end{multline*}
({*}) by properties of generalized filter bases, taking into account
that funcoids are isomorphic to filters.
\item [{\ref{fcd-up-g-fcd}}] $\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun Fa=\left\langle \bigsqcap^{\mathsf{FCD}}\up^{\Gamma(\Src f,\Dst f)}f\right\rangle a=\supfun{\tofcd f}a$
for every ultrafilter $a$.
It remains to prove that the function
\[
\varphi=\lambda\mathcal{X}\in\mathscr{F}(\Src f):\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}
\]
is a component of a funcoid (from what follows that $\varphi=\supfun{\tofcd f}$).
To prove this, it's enough to show that it preserves finite joins
and filtered meets.
$\varphi\bot=\bot$ is obvious. $\varphi(\mathcal{I}\sqcup\mathcal{J})=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}(\supfun F\mathcal{I}\sqcup\supfun F\mathcal{J})=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{I}\sqcup\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{J}=\varphi\mathcal{I}\sqcup\varphi\mathcal{J}$.
If $S$ is a generalized filter base of $\Src f$, then
\begin{multline*}
\varphi\bigsqcap^{\mathscr{F}}S=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\bigsqcap^{\mathscr{F}}S=\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\bigsqcap^{\mathscr{F}}\rsupfun{\supfun F}S=\\
\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\bigsqcap_{\mathcal{X}\in S}^{\mathscr{F}}\supfun F\mathcal{X}=\bigsqcap_{\mathcal{X}\in S}^{\mathscr{F}}\bigsqcap_{F\in\up^{\Gamma(\Src f,\Dst f)}f}^{\mathscr{F}}\supfun F\mathcal{X}=\bigsqcap_{\mathcal{X}\in S}^{\mathscr{F}}\varphi\mathcal{X}=\bigsqcap^{\mathscr{F}}\rsupfun{\varphi}S.
\end{multline*}
So $\varphi$ is a component of a funcoid.
\end{widedisorder}
\end{proof}
\begin{defn}
$\boxbox f=\bigsqcap^{\mathsf{RLD}}\up^{\Gamma(\Src f,\Dst f)}f$
for reloid $f$.\end{defn}
\begin{conjecture}
$\boxbox f=\torldin \tofcd f$ for every reloid $f$.
\end{conjecture}
\begin{obvious}
$\boxbox f\sqsupseteq f$ for every reloid $f$.\end{obvious}
\begin{example}
$\torldin f\neq\boxbox\torldout f$ for some funcoid
$f$.\end{example}
\begin{proof}
Take $f=\id_{\Omega(\mathbb{N})}^{\mathsf{FCD}}$. Then, as it was
shown above, $\torldout f=\bot$ and thus $\boxbox\torldout f=\bot$.
But $\torldin f\sqsupseteq\torldin f\neq\bot$. So $\torldin f\neq\boxbox\torldout f$.\end{proof}
Another proof of the theorem ``$\dom\torldin f=\dom f$ and $\im\torldin f=\im f$
for every funcoid $f$.'':
\begin{proof}
We have for every filter $\mathcal{X}\in\mathscr{F}(\Src f)$:
\begin{multline*}
\mathcal{X}\sqsupseteq\dom\torldin f\Leftrightarrow\mathcal{X}\times^{\mathsf{RLD}}\top\sqsupseteq\torldin f\Leftrightarrow\\
\forall a\in\mathscr{F}(\Src f),b\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\sqsubseteq f\Rightarrow a\times^{\mathsf{RLD}}b\sqsubseteq\mathcal{X}\times^{\mathsf{RLD}}\top)\Leftrightarrow\\
\forall a\in\mathscr{F}(\Src f),b\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\sqsubseteq f\Rightarrow a\sqsubseteq\mathcal{X})
\end{multline*}
and
\begin{multline*}
\mathcal{X}\sqsupseteq\dom f\Leftrightarrow\mathcal{X}\times^{\mathsf{FCD}}\top\sqsupseteq f\Leftrightarrow\\
\forall a\in\mathscr{F}(\Src f),b\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\sqsubseteq f\Rightarrow a\times^{\mathsf{FCD}}b\sqsubseteq\mathcal{X}\times^{\mathsf{FCD}}\top)\Leftrightarrow\\
\forall a\in\mathscr{F}(\Src f),b\in\mathscr{F}(\Dst f):(a\times^{\mathsf{FCD}}b\sqsubseteq f\Rightarrow a\sqsubseteq\mathcal{X}).
\end{multline*}
Thus $\dom\torldin f=\dom f$. The rest follows from symmetry.\end{proof}
Another proof that
$\dom\torldin f=\dom f$ and $\im\torldin f=\im f$ for every funcoid $f$:
\begin{proof}
$\dom\torldin f\sqsupseteq\dom f$ and $\im\torldin f\sqsupseteq\im f$
because $\torldin f\sqsupseteq\torldin$ and $\dom\torldin f=\dom f$
and $\im\torldin f=\im f$.
It remains to prove (as the rest follows from symmetry) that $\dom\torldin f\sqsubseteq\dom f$.
Really,
\begin{multline*}
\dom\torldin f\sqsubseteq\bigsqcap^{\mathscr{F}}\setcond{X\in\up\dom f}{X\times\top\in\up f}=\\
\bigsqcap^{\mathscr{F}}\setcond{X\in\up\dom f}{X\in\up\dom f}=\bigsqcap^{\mathscr{F}}\up\dom f=\dom f.
\end{multline*}
\end{proof}
\section{More on properties of funcoids}
\begin{prop}
$\Gamma(A,B)$ is the center of lattice $\mathsf{FCD}(A,B)$.\end{prop}
\begin{proof}
Theorem~\ref{pow-filt-central}.\end{proof}
\begin{prop}
$\up^{\Gamma(A,B)}(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})$
is defined by the filter base $\setcond{A\times B}{A\in\up\mathcal{A},B\in\up\mathcal{B}}$
on the lattice $\Gamma(A,B)$.\end{prop}
\begin{proof}
It follows from the fact that $\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}=\bigsqcap^{\mathsf{FCD}}\setcond{A\times B}{A\in\up\mathcal{A},B\in\up\mathcal{B}}$.\end{proof}
\begin{prop}
$\up^{\Gamma(A,B)}(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})=\mathfrak{F}(\Gamma(A,B))\cap\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$.\end{prop}
\begin{proof}
It follows from the fact that $\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}=\bigsqcap^{\mathsf{FCD}}\setcond{A\times B}{A\in\up\mathcal{A},B\in\up\mathcal{B}}$.\end{proof}
\begin{prop}
For every $f\in\mathfrak{F}(\Gamma(A,B))$:
\begin{enumerate}
\item \label{gamma-ff}$f\circ f$ is defined by the filter base $\setcond{F\circ F}{F\in\up f}$
(if $A=B$);
\item \label{gamma-f1f}$f^{-1}\circ f$ is defined by the filter base $\setcond{F^{-1}\circ F}{F\in\up f}$;
\item \label{gamma-ff1}$f\circ f^{-1}$ is defined by the filter base $\setcond{F\circ F^{-1}}{F\in\up f}$.
\end{enumerate}
\end{prop}
\begin{proof}
I will prove only \ref{gamma-ff} and \ref{gamma-f1f} because \ref{gamma-ff1}
is analogous to~\ref{gamma-f1f}.
\begin{widedisorder}
\item [{\ref{gamma-ff}}] It's enough to show that $\forall F,G\in\up f\exists H\in\up f:H\circ H\sqsubseteq G\circ F$.
To prove it take $H=F\sqcap G$.
\item [{\ref{gamma-f1f}}] It's enough to show that $\forall F,G\in\up f\exists H\in\up f:H^{-1}\circ H\sqsubseteq G^{-1}\circ F$.
To prove it take $H=F\sqcap G$. Then $H^{-1}\circ H=(F\sqcap G)^{-1}\circ(F\sqcap G)\sqsubseteq G^{-1}\circ F$.
\end{widedisorder}
\end{proof}
\begin{thm}
For every sets $A$, $B$, $C$ if $g,h\in\mathfrak{F}\Gamma(A,B)$
then
\begin{enumerate}
\item $f\circ(g\sqcup h)=f\circ g\sqcup f\circ h$;
\item $(g\sqcup h)\circ f=g\circ f\sqcup h\circ f$.
\end{enumerate}
\end{thm}
\begin{proof}
It follows from the order isomorphism above, which preserves composition.\end{proof}
\begin{thm}
$f\cap g=f\sqcap^{\mathsf{FCD}}g$ if $f,g\in\Gamma(A,B)$.\end{thm}
\begin{proof}
Let $f=X_{0}\times Y_{0}\cup\ldots\cup X_{n}\times Y_{n}$ and $g=X'_{0}\times Y'_{0}\cup\ldots\cup X'_{m}\times Y'_{m}$.
Then
\begin{multline*}
f\cap g=\bigcup_{i=0,\ldots,n,j=0,\ldots,m}((X_{i}\times Y_{i})\cap(X'_{j}\times Y'_{j}))=\\
\bigcup_{i=0,\ldots,n,j=0,\ldots,m}((X_{i}\cap X'_{j})\times(Y_{i}\cap Y'_{j})).
\end{multline*}
But $f=X_{0}\times Y_{0}\sqcup^{\mathsf{FCD}}\ldots\sqcup^{\mathsf{FCD}}X_{n}\times Y_{n}$
and $g=X'_{0}\times Y'_{0}\sqcup^{\mathsf{FCD}}\ldots\sqcup^{\mathsf{FCD}}X'_{m}\times Y'_{m}$;
\begin{multline*}
f\sqcap^{\mathsf{FCD}}g=\bigsqcup_{i=0,\ldots,n,j=0,\ldots,m}((X_{i}\times Y_{i})\sqcap^{\mathsf{FCD}}(X'_{j}\times Y'_{j}))=\\
\bigsqcup_{i=0,\ldots,n,j=0,\ldots,m}((X_{i}\sqcap X'_{j})\times^{\mathsf{FCD}}(Y_{i}\sqcap Y'_{j})).
\end{multline*}
\begin{cor}
If $X$ and $Y$ are finite binary relations, then
\begin{enumerate}
\item $X \sqcap^{\mathsf{FCD}} Y = X \sqcap Y$;
\item $(\top \setminus X) \sqcap^{\mathsf{FCD}} (\top \setminus Y) =
(\top \setminus X) \sqcap (\top \setminus Y)$;
\item $X \sqcap^{\mathsf{FCD}} (\top \setminus Y) = X \sqcap (\top
\setminus Y)$.
\end{enumerate}
\end{cor}
Now it's obvious that $f\cap g=f\sqcap^{\mathsf{FCD}}g$.\end{proof}
\begin{thm}
The set of funcoids (from a given set~$A$ to a given set~$B$)
is with separable core.\end{thm}
\begin{proof}
Let $f,g\in\mathsf{FCD}(A,B)$ (for some sets~$A$,$B$).
Because filters on distributive lattices are with separable core,
there exist $F,G\in\Gamma(A,B)$ such that $F\cap G=\emptyset$. Then
by the previous theorem $F\sqcap^{\mathsf{FCD}}G=\bot$.\end{proof}
\begin{thm}
The coatoms of funcoids from a set~$A$ to a set~$B$ are exactly
$(A\times B)\setminus(\{x\}\times\{y\})$ for $x\in A$, $y\in B$.\end{thm}
\begin{proof}
That coatoms of $\Gamma(A,B)$
are exactly $(A\times B)\setminus(\{x\}\times\{y\})$ for $x\in A$,
$y\in B$, is obvious. To show that coatoms of funcoids are the same,
it remains to apply proposition~\ref{coat}.\end{proof}
\begin{thm}
The set of funcoids (for given~$A$ and~$B$) is coatomic.\end{thm}
\begin{proof}
Proposition~\ref{coat-ic}.\end{proof}
\begin{xca}
Prove that in general funcoids are not coatomistic.\end{xca}
\section{Funcoid bases}
This section will present mainly a counter-example against a statement you have not thought about anyway.
\begin{lem}
If $S$ is an upper set of principal funcoids, then
$\bigsqcap^{\mathsf{FCD}} (S\cap\Gamma)=\bigsqcap^{\mathsf{FCD}} S$.
\end{lem}
\begin{proof}
$\bigsqcap^{\mathsf{FCD}} (S\cap\Gamma) \sqsupseteq \bigsqcap^{\mathsf{FCD}} S$ is obvious.
$\bigsqcap^{\mathsf{FCD}} S = \bigsqcap^{\mathsf{FCD}} \bigsqcap^{\mathsf{FCD}}_{K\in S} T_K \sqsupseteq \bigsqcap^{\mathsf{FCD}} (S\cap\Gamma)$.
where $T_K\in\subsets (S\cap\Gamma)$.
So $\bigsqcap^{\mathsf{FCD}} (S\cap\Gamma) = \bigsqcap^{\mathsf{FCD}} S$.
\end{proof}
\begin{thm}
If $S$ is a filter base on the set of binary relations then $S$ is a base of
$\bigsqcap^{\mathsf{FCD}} S$.
\end{thm}
First prove a special case of our theorem to get the idea:
\begin{example}
Take the filter base $S = \setcond{
\setcond{ (x, y) }{ | x - y | < \varepsilon }}{ \varepsilon > 0 }$ and $K = \setcond{ (x, y) }{
| x - y | < \exp x }$ where $x$ and $y$ range real
numbers. Then $K \notin \up \bigsqcap^{\mathsf{FCD}} S$.
\end{example}
\begin{proof}
Take a nontrivial ultrafilter $x$ on $\mathbb{R}$. We can for simplicity
assume $x \sqsubseteq \mathbb{Z}$.
\[ \supfun{\bigsqcap^{\mathsf{FCD}} S} x =
\bigsqcap^{\mathscr{F}}_{L \in S} \supfun{L} x =
\bigsqcap^{\mathscr{F}}_{L \in S, X \in \up x} \rsupfun{L} X =
\bigsqcap^{\mathscr{F}}_{\varepsilon > 0, X \in \up
x} \bigsqcup_{\alpha \in X} \mathopen] \alpha - \varepsilon ; \alpha + \varepsilon \mathclose[. \]
$\supfun{K} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \rsupfun{K} X =
\bigsqcap^{\mathscr{F}}_{X \in \up x}
\bigsqcup_{\alpha \in X}\mathopen] \alpha - \exp \alpha ; \alpha + \exp \alpha \mathclose[$.
Suppose for the contrary that $\supfun{K} x \sqsupseteq \supfun{
\bigsqcap^{\mathsf{FCD}} S } x$.
Then
$\bigsqcup_{\alpha \in X} \mathopen] \alpha - \exp \alpha ; \alpha + \exp \alpha \mathclose[
\sqsupseteq \bigsqcap^{\mathscr{F}}_{\varepsilon > 0, X \in \up x}
\bigsqcup_{\alpha \in X} \mathopen] \alpha - \varepsilon ; \alpha + \varepsilon \mathclose[$ for
every $X \in \up x$;
thus by properties of generalized filter bases ($\setcond{ \bigsqcup_{\alpha
\in X} \mathopen] \alpha - \varepsilon ; \alpha + \varepsilon \mathclose[ }{
\varepsilon > 0 }$ is a filter base and even a chain)
$\bigsqcup_{\alpha \in X} \mathopen] \alpha - \exp \alpha ; \alpha + \exp \alpha \mathclose[
\sqsupseteq \bigsqcap^{\mathscr{F}}_{X \in \up x} \bigsqcup_{\alpha
\in X} \mathopen] \alpha - \varepsilon ; \alpha + \varepsilon \mathclose[$ for some $\varepsilon
> 0$ and thus
by properties of generalized filter bases ($\setcond{ \bigsqcup_{\alpha \in
X} \mathopen] \alpha - \varepsilon ; \alpha + \varepsilon \mathclose[ }{
X \in \up x }$ is a filter base) for some $X' \in \up x$
\[ \bigsqcup_{\alpha \in X} \mathopen] \alpha - \exp \alpha ; \alpha + \exp \alpha \mathclose[
\sqsupseteq \bigsqcup_{\alpha \in X'} \mathopen] \alpha - \varepsilon ; \alpha +
\varepsilon \mathclose[ \]
what is impossible by the fact that $\exp \alpha$ goes infinitely small as
$\alpha \rightarrow - \infty$ and the fact that we can take $X =\mathbb{Z}$
for some $x$.
\end{proof}
Now prove the general case:
\begin{proof}
Suppose that $K \in \up \bigsqcap^{\mathsf{FCD}} S$ and thus
$\supfun{K} x \sqsupseteq \supfun{
\bigsqcap^{\mathsf{FCD}} S } x$.
We need to prove that there is some~$L\in S$ such that $K\sqsupseteq L$.
Take an ultrafilter $x$.
$\supfun{\bigsqcap^{\mathsf{FCD}} S} x =
\bigsqcap^{\mathscr{F}}_{L \in S} \supfun{L} x =
\bigsqcap^{\mathscr{F}}_{L \in S, X \in \up x} \rsupfun{L} X$.
$\supfun{K} x = \bigsqcap^{\mathscr{F}}_{X \in \up x} \rsupfun{K}X$.
Then
$\rsupfun{K} X \sqsupseteq \bigsqcap^{\mathscr{F}}_{L \in S, X
\in \up x} \rsupfun{L} X$ for every $X \in \up x$;
thus by properties of generalized filter bases ($\setcond{ \rsupfun{L}X
}{ L \in S }$ is a filter base);
$\rsupfun{K} X \sqsupseteq \bigsqcap^{\mathscr{F}}_{X \in
\up x} \rsupfun{L} X$ for some $L \in S$ and thus
by properties of generalized filter bases ($\setcond{ \rsupfun{L}
X }{ X \in \up x }$ is a filter base) for some $X' \in \up x$
$\rsupfun{K} X \sqsupseteq \rsupfun{L} X'
\sqsupseteq \supfun{L} x$.
So $\supfun{K} x \sqsupseteq \supfun{L} x$ because this
equality holds for every $X \in \up x$. Therefore $K \sqsupseteq L$.
\end{proof}
\begin{example}
A base of a funcoid which is not a filter base.
\end{example}
\begin{proof}
Consider $f=\id^{\mathsf{FCD}}_{\Omega}$. We know that $\up f$ is not a
filter base. But it is a base of a funcoid.
\end{proof}
\begin{xca}
Prove that a set $S$ is a filter (on some set) iff
\[ \forall X_0,\dots,X_n\in S:\up(X_0\sqcap\dots\sqcap X_n)\subseteq S \]
for every natural~$n$.
\end{xca}
A similar statement does \emph{not} hold for funcoids:
\begin{example}
For a set $S$ of binary relations
\[ \forall X_0,\dots,X_n\in S:\up(X_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} X_n)\subseteq S \]
does not imply that there exists funcoid~$f$ such that $S=\up f$.
\end{example}
\begin{proof}
Take $S_0 = \up 1^{\mathsf{FCD}}$ (where $1^{\mathsf{FCD}}$ is the identity funcoid on any infinite set)
and $S_1 = \bigcup_{F\in S_0} \setcond{\up G}{G\in\up^{\Gamma} F}$ (that is
$S_1 = \bigcup_{F\in\up^{\Gamma} 1^{\mathsf{FCD}}}\up F$).
Both $S_0$ and $S_1$ are upper sets. $S_0\ne S_1$ because $1^{\mathsf{FCD}}\in S_0$ and $1^{\mathsf{FCD}}\notin S_1$.
The formula in the example works for $S=S_0$ because $X_0,\dots,X_n\in \up 1^{\mathsf{FCD}}$. It also holds for $S=S_1$ by the
following reason:
Suppose $X_0,\dots,X_n\in S_1$. Then $X_i\sqsupseteq F_i$ where $F_i\in S_0$.
Consequently (take into account that $\Gamma$ is a sublattice of $\mathsf{FCD}$)
$X_0,\dots,X_n \sqsupseteq F_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} F_n$ and so
$X_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} X_n=
X_0\sqcap\dots\sqcap X_n \sqsupseteq F_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} F_n \sqsupseteq 1^{\mathsf{FCD}}$.
Thus $X_0\sqcap\dots\sqcap X_n \in \up^{\Gamma} 1^{\mathsf{FCD}} \subseteq S_1$;
$\up(X_0\sqcap\dots\sqcap X_n)\subseteq S_1$ as $S_1$ is an upper set.
To finish the proof suppose for the contrary that $\up f_0=S_0$ and $\up f_1=S_1$ for some funcoids~$f_0$ and~$f_1$.
In this case $f_0=\bigsqcap^{\mathsf{FCD}} S_0 = 1^{\mathsf{FCD}} = \bigsqcap^{\mathsf{FCD}} \up^{\Gamma} 1^{\mathsf{FCD}} =
\bigsqcap^{\mathsf{FCD}} S_1 = f_1$ and thus $S_0=S_1$, contradiction.
\end{proof}
\begin{prop}
For a set $S$ of binary relations
\[ \forall X_0,\dots,X_n\in S:\up(X_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} X_n)\subseteq S \]
does not imply that~$S$ is a funcoid base.
\end{prop}
\begin{proof}
Suppose for the contrary that it does imply. Then, because~$S$ is an upper set (as follows from the condition,
taking $n=0$), it implies that~$S=\up f$ for a funcoid~$f$, what contradicts to the above example.
\end{proof}
\begin{conjecture}
Let $\forall X,Y\in S:\up(X\sqcap^{\mathsf{FCD}} Y)\subseteq S$.
Then
\[ \forall X_0,\dots,X_n\in S:\up(X_0\sqcap^{\mathsf{FCD}}\dots\sqcap^{\mathsf{FCD}} X_n)\subseteq S. \]
\end{conjecture}
\begin{xca}
$\up (f_0 \sqcap^{\mathsf{FCD}} \ldots
\sqcap^{\mathsf{FCD}} f_n) \subseteq \setcond{ F_0 \sqcap \ldots \sqcap
F_n }{ F_0 \in \up f_0 \wedge \ldots \wedge F_n \in \up f_n }$ for every funcoids~$f_0$, \dots, $f_n$ ($n\in\mathbb{N}$).
\end{xca}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Some (example) values}
I will do some calculations of particular funcoids and reloids.
First note that $\sqcap^{\mathsf{FCD}}$ can be decomposed (see below for a short easy proof):
\[ f \sqcap^{\mathsf{FCD}} g = \tofcd ((\torldin f \sqcap \torldin g). \]
The above is a more understandable decomposition of the operation~$\sqcap^{\mathsf{FCD}}$
which behaves in strange way, mapping meet of two binary relations into a funcoid which
is not a binary relation ($1^{\mathsf{FCD}} \sqcap^{\mathsf{FCD}} (\top \setminus 1^{\mathsf{FCD}}) =
1^{\mathsf{FCD}}_{\Omega}$).
The last formula is easy to prove (and proved above in the book) but the result is counter-intuitive.
More generally:
\[ \bigsqcap^{\mathsf{FCD}} S = \tofcd \bigsqcap^{\mathsf{RLD}} \rsupfun{\torldin} S. \]
The above formulas follow from the fact that~$\tofcd$ is an upper adjoint
and that $\tofcd\torldin f=f$ for every funcoid $f$.
Let $\mathsf{FCD}$ denote funcoids on a set $U$.
Consider a special case of the above formulas:
\begin{equation}\label{fcd-meet-spec}
1^{\mathsf{FCD}} \sqcap^{\mathsf{FCD}} (\top \setminus 1^{\mathsf{FCD}}) =
\tofcd (\torldin 1^{\mathsf{FCD}} \sqcap \torldin (\top \setminus 1^{\mathsf{FCD}})).
\end{equation}
We want to calculate terms of the formula~\eqref{fcd-meet-spec} and more generally do some
(probably useless) calculations for particular funcoids and reloids related to the above formula.
The left side is already calculated. The term~$\torldin 1^{\mathsf{FCD}}$ which I call
``thick equality'' above is well understood. Let's compute $\torldin (\top \setminus 1^{\mathsf{FCD}})$.
\begin{prop}
$\torldin (\top \setminus 1^{\mathsf{FCD}}) = \top \setminus 1^{\mathsf{FCD}}$.
\end{prop}
\begin{proof}
Consider funcoids on a set $U$. For any filters~$x$ and~$y$ (or without loss of generality ultrafilters~$x$ and~$y$) we have:
\begin{multline*}
x \times^{\mathsf{FCD}} y \sqsubseteq \top \setminus
1^{\mathsf{FCD}} \Leftrightarrow \\ \text{(theorem 574 and the fact that
funcoids are filters)} \Leftrightarrow \\ x \times^{\mathsf{FCD}} y \asymp
1^{\mathsf{FCD}} \Leftrightarrow \neg \left( x
\mathrel{[1^{\mathsf{FCD}}]} y \right) \Leftrightarrow x \asymp y
\Rightarrow \\ \exists X \in \up x, Y \in \up y : X \asymp Y.
\end{multline*}
Thus $\torldin (\top \setminus
1^{\mathsf{FCD}}) = \bigsqcup \setcond{ X \times Y}
{X, Y \in \mathscr{T} U, X \asymp Y } = \top \setminus
1^{\mathsf{FCD}}$.
\end{proof}
So, we have:
\[
1^{\mathsf{FCD}}_{\Omega} =
1^{\mathsf{FCD}} \sqcap^{\mathsf{FCD}} (\top \setminus 1^{\mathsf{FCD}}) =
\torldin 1^{\mathsf{FCD}} \sqcap^{\mathsf{FCD}} (\top \setminus 1^{\mathsf{FCD}}).
\]
\begin{prop}\label{cj-rldin-diag}
If $X_0 \sqcup \ldots \sqcup X_n = \top$ then $(X_0 \times X_0) \sqcup
\ldots \sqcup (X_n \times X_n) \in \up
\torldin 1^{\mathsf{FCD}}$.
\end{prop}
\begin{proof}
It's enough to prove $(X_0 \times X_0) \sqcup \ldots \sqcup (X_n \times X_n)
\in \up (x \times x)$ for every ultrafilter~$x$, what follows from the
fact that $x \sqsubseteq X_i$ for some~$i$ and thus $x \times x \sqsubseteq
X_i \times X_i$.
\end{proof}
\begin{prop}
For finite tuples $X$, $Y$ of typed sets
\[ (X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n) \sqsupseteq 1
\Leftrightarrow (X_0 \sqcap Y_0) \sqcup \ldots \sqcup (X_n \sqcap Y_n) =
\top . \]
\end{prop}
\begin{proof}
\begin{multline*}
(X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n) \sqsupseteq 1
\Leftrightarrow \\ ((X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n))
\sqcap 1 = 1 \Leftrightarrow \\ ((X_0 \times Y_0) \sqcap 1) \sqcup \ldots
\sqcup ((X_n \times Y_n) \sqcap 1) = 1 \Leftrightarrow \\ \id_{X_0 \sqcap
Y_0} \sqcup \ldots \sqcup \id_{X_n \sqcap Y_n} = 1 \Leftrightarrow \\
\id_{(X_0 \sqcap Y_0) \sqcup \ldots \sqcup (X_n \sqcap Y_n)} = 1
\Leftrightarrow \\ (X_0 \sqcap Y_0) \sqcup \ldots \sqcup (X_n \sqcap Y_n) =
\top.
\end{multline*}
\end{proof}
\begin{cor}
~
\[ \up^{\Gamma} 1 = \setcond{ (X_0 \times Y_0) \sqcup \ldots \sqcup (X_n
\times Y_n) }{ n \in \mathbb{N}, \forall i \in
n : X_i, Y_i \in \mathscr{T} U, (X_0 \sqcap Y_0) \sqcup \ldots \sqcup
(X_n \sqcap Y_n) = \top } . \]
\end{cor}
\begin{cor}
The predicate
$(X_0 \sqcap Y_0) \sqcup \ldots \sqcup (X_n \sqcap Y_n) = \top$ for an
element $(X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n)$ of $\Gamma$
does not depend on its representation $(X_0 \times Y_0) \sqcup \ldots \sqcup
(X_n \times Y_n)$.
\end{cor}
\begin{prop}
~
\[ \up^{\Gamma} 1 = \bigcup \setcond{ \up^{\Gamma} ((X_0 \times
X_0) \sqcup \ldots \sqcup (X_n \times X_n)) }{ n
\in \mathbb{N}, \forall i \in n : X_i \in \mathscr{T} U, X_0 \sqcup
\ldots \sqcup X_n = \top } . \]
\end{prop}
\begin{proof}
If $(X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n) \in
\up^{\Gamma} 1$ then we have
\begin{multline*}
(X_0 \times Y_0) \sqcup \ldots \sqcup (X_n \times Y_n) \sqsupseteq \\ ((X_0
\sqcap Y_0) \times (X_0 \sqcap Y_0)) \sqcup \ldots \sqcup ((X_n \sqcap
Y_n) \times (X_n \sqcap Y_n)) \in \up^{\Gamma} 1.
\end{multline*}
Thus
\[ \up^{\Gamma} 1 \subseteq \bigcup \setcond{ \up^{\Gamma} ((X_0
\times X_0) \sqcup \ldots \sqcup (X_n \times X_n)) }{
\hspace{1em} n \in \mathbb{N}, \forall i \in n : X_i \in \mathscr{T} U,
X_0 \sqcup \ldots \sqcup X_n = \top } . \]
The reverse inclusion is obvious.
\end{proof}
\begin{prop}
~
\[ \torldin 1^{\mathsf{FCD}} =
\bigsqcap^{\mathsf{RLD}} \setcond{ (X_0 \times X_0) \sqcup \ldots
\sqcup (X_n \times X_n) }{ n \in \mathbb{N},
\forall i \in n : X_i \in \mathscr{T} U, X_0 \sqcup \ldots \sqcup X_n =
\top } . \]
\end{prop}
\begin{proof}
By the diagram we have $\torldin
1^{\mathsf{FCD}} = \bigsqcap^{\mathsf{RLD}} \up^{\Gamma} 1$. So it follows from the previous proposition.
\end{proof}
\begin{prop}
$\up^{\Gamma} \torldin 1^{\mathsf{FCD}} = \up^{\Gamma} 1$.
\end{prop}
\begin{proof}
If $K \in \up^{\Gamma} 1$ then $K \in \up^{\Gamma} ((X_0 \times
X_0) \sqcup \ldots \sqcup (X_n \times X_n))$ and thus $K \in
\up^{\Gamma} \torldin