-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-fcd-counter.tex
439 lines (388 loc) · 25.3 KB
/
chap-fcd-counter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
\chapter{Counter-examples about funcoids and reloids}
For further examples we will use the filter defined by the formula
\[
\Delta=\bigsqcap^{\mathscr{F}(\mathbb{R})}\setcond{\mathopen]-\epsilon;\epsilon\mathclose[}{\epsilon\in\mathbb{R},\epsilon>0}.
\]
I will denote $\Omega(A)$ the Fr\'echet filter on a set $A$.
\begin{example}\label{fcd-not-infdist}
There exist a funcoid $f$ and a set $S$ of funcoids such that $f\sqcap\bigsqcup S\neq\bigsqcup\rsupfun{f\sqcap}S$.\end{example}
\begin{proof}
Let $f=\Delta\times^{\mathsf{FCD}}\uparrow^{\mathscr{F}(\mathbb{R})}\{0\}$
and $S=\setcond{\uparrow^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}(]\epsilon;+\infty[\times\{0\})}{\epsilon\in\mathbb{R},\epsilon>0}$.
Then
\begin{multline*}
f\sqcap\bigsqcup S=(\Delta\times^{\mathsf{FCD}}\uparrow^{\mathscr{F}(\mathbb{R})}\{0\})\sqcap\uparrow^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}(]0;+\infty[\times\{0\})=\\
(\Delta\sqcap\uparrow^{\mathscr{F}(\mathbb{R})}]0;+\infty[)\times^{\mathsf{FCD}}\uparrow^{\mathscr{F}(\mathbb{R})}\{0\}\ne\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}
\end{multline*}
while $\bigsqcup\rsupfun{f\sqcap}S=\bigsqcup\{\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}\}=\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}$.\end{proof}
\begin{example}
There exist a set $R$ of funcoids and a funcoid $f$ such that $f\circ\bigsqcup R\neq\bigsqcup\rsupfun{f\circ}R$.\end{example}
\begin{proof}
Let $f=\Delta\times^{\mathsf{FCD}}\uparrow^{\mathscr{F}(\mathbb{R})}\{0\}$,
$R=\setcond{\uparrow^{\mathbb{R}}\{0\}\times^{\mathsf{FCD}}\uparrow^{\mathbb{R}}]\epsilon;+\infty[}{\epsilon\in\mathbb{R},\epsilon>0}$.
We have $\bigsqcup R=\uparrow^{\mathbb{R}}\{0\}\times^{\mathsf{FCD}}\uparrow^{\mathbb{R}}]0;+\infty[$;
$f\circ\bigsqcup R=\uparrow^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}(\{0\}\times\{0\})\ne\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}$
and $\bigsqcup\rsupfun{f\circ}R=\bigsqcup\{\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}\}=\bot^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}$.\end{proof}
\begin{example}
There exist a set $R$ of reloids and a reloid $f$ such that $f\circ\bigsqcup R\neq\bigsqcup\rsupfun{f\circ}R$.\end{example}
\begin{proof}
Let $f=\Delta\times^{\mathsf{RLD}}\uparrow^{\mathscr{F}(\mathbb{R})}\{0\}$,
$R=\setcond{\uparrow^{\mathbb{R}}\{0\}\times^{\mathsf{RLD}}\uparrow^{\mathbb{R}}]\epsilon;+\infty[}{\epsilon\in\mathbb{R},\epsilon>0}$.
We have $\bigsqcup R=\uparrow^{\mathbb{R}}\{0\}\times^{\mathsf{RLD}}\uparrow^{\mathbb{R}}]0;+\infty[$;
$f\circ\bigsqcup R=\uparrow^{\mathsf{RLD}(\mathbb{R},\mathbb{R})}(\{0\}\times\{0\})\ne\bot^{\mathsf{RLD}(\mathbb{R},\mathbb{R})}$
and $\bigsqcup\rsupfun{f\circ}R=\bigsqcup\{\bot^{\mathsf{RLD}(\mathbb{R},\mathbb{R})}\}=\bot^{\mathsf{RLD}(\mathbb{R},\mathbb{R})}$.\end{proof}
\begin{example}
There exist a set $R$ of funcoids and filters $\mathcal{X}$ and
$\mathcal{Y}$ such that
\begin{enumerate}
\item \label{count-join-rel}$\mathcal{X}\suprel{\bigsqcup R}\mathcal{Y}\land\nexists f\in R:\mathcal{X}\suprel f\mathcal{Y}$;
\item \label{count-join-fun}$\supfun{\bigsqcup R}\mathcal{X}\sqsupset\bigsqcup\setcond{\supfun f\mathcal{X}}{f\in R}$.
\end{enumerate}
\end{example}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{count-join-rel}}] Take $\mathcal{X}=\Delta$ and $\mathcal{Y}=\top^{\mathscr{F}(\mathbb{R})}$,
$R=\setcond{\uparrow^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}(]\epsilon;+\infty[\times\mathbb{R})}{\epsilon\in\mathbb{R},\epsilon>0}$.
Then $\bigsqcup R=\uparrow^{\mathsf{FCD}(\mathbb{R},\mathbb{R})}(]0;+\infty[\times\mathbb{R})$.
So $\mathcal{X}\suprel{\bigsqcup R}\mathcal{Y}$ and $\forall f\in R:\lnot(\mathcal{X}\suprel f\mathcal{Y})$.
\item [{\ref{count-join-fun}}] With the same $\mathcal{X}$ and $R$ we
have $\supfun{\bigsqcup R}\mathcal{X}=\top^{\mathscr{F}(\mathbb{R})}$
and $\supfun f\mathcal{X}=\bot^{\mathscr{F}(\mathbb{R})}$ for every
$f\in R$, thus $\bigsqcup\setcond{\supfun f\mathcal{X}}{f\in R}=\bot^{\mathscr{F}(\mathbb{R})}$.
\end{widedisorder}
\end{proof}
\begin{example}
$\bigsqcup_{\mathcal{B}\in T}(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})\ne\mathcal{A}\times^{\mathsf{RLD}}\bigsqcup T$
for some filter $\mathcal{A}$ and set of filters $T$ (with a common
base).\end{example}
\begin{proof}
Take $\mathbb{R}_{+}=\setcond{x\in\mathbb{R}}{x>0}$, $\mathcal{A}=\Delta$,
$T=\setcond{\uparrow\{x\}}{x\in\mathbb{R}_{+}}$ where $\mathord\uparrow=\mathord{\uparrow^{\mathbb{R}}}$.
$\bigsqcup T=\uparrow\mathbb{R}_{+}$; $\mathcal{A}\times^{\mathsf{RLD}}\bigsqcup T=\Delta\times^{\mathsf{RLD}}\uparrow\mathbb{R}_{+}$.
$\bigsqcup_{\mathcal{B}\in T}(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\bigsqcup_{x\in\mathbb{R}_{+}}(\Delta\times^{\mathsf{RLD}}\uparrow\{x\})$.
We'll prove that $\bigsqcup_{x\in\mathbb{R}_{+}}(\Delta\times^{\mathsf{RLD}}\uparrow\{x\})\ne\Delta\times^{\mathsf{RLD}}\uparrow\mathbb{R}_{+}$.
Consider $K=\bigcup_{x\in\mathbb{R}_{+}}(\{x\}\times]-1/x;1/x[)$.
$K\in\up(\Delta\times^{\mathsf{RLD}}\uparrow\{x\})$ and thus $K\in\up\bigsqcup_{x\in\mathbb{R}_{+}}(\Delta\times^{\mathsf{RLD}}\uparrow\{x\})$
. But $K\notin\up(\Delta\times^{\mathsf{RLD}}\uparrow\mathbb{R}_{+})$.\end{proof}
\begin{thm}
For a filter $a$ we have $a\times^{\mathsf{RLD}}a\sqsubseteq1_{\Base(a)}^{\mathsf{RLD}}$
only in the case if $a=\bot^{\mathscr{F}(\Base(a))}$ or $a$ is a
trivial ultrafilter.\end{thm}
\begin{proof}
If $a\times^{\mathsf{RLD}}a\sqsubseteq1_{\Base(a)}^{\mathsf{RLD}}$
then there exists $m\in\up(a\times^{\mathsf{RLD}}a)$ such that $m\sqsubseteq1_{\Base(a)}^{\mathbf{Rel}}$.
Consequently there exist $A,B\in\up a$ such that $A\times B\sqsubseteq1_{\Base(a)}^{\mathbf{Rel}}$
what is possible only in the case when $\uparrow A=\uparrow B=a$
is trivial a ultrafilter or the least filter.\end{proof}
\begin{cor}
Reloidal product of a non-trivial atomic filter with itself is non-atomic.\end{cor}
\begin{proof}
Obviously $(a\times^{\mathsf{RLD}}a)\sqcap1_{\Base(a)}^{\mathsf{RLD}}\ne\bot^{\mathsf{RLD}}$
and $(a\times^{\mathsf{RLD}}a)\sqcap1_{\Base(a)}^{\mathsf{RLD}}\sqsubset a\times^{\mathsf{RLD}}a$.\end{proof}
\begin{example}
There exist two atomic reloids whose composition is non-atomic and
non-empty.\end{example}
\begin{proof}
Let $a$ be a non-trivial ultrafilter on $\mathbb{N}$ and $x\in\mathbb{N}$.
Then
\begin{multline*}
(a\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{x\})\circ(\uparrow^{\mathbb{N}}\{x\}\times^{\mathsf{RLD}}a)=\bigsqcap_{A\in a}^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}((A\times\{x\})\circ(\{x\}\times A)=\\
\bigsqcap_{A\in a}^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}(A\times A)=a\times^{\mathsf{RLD}}a
\end{multline*}
is non-atomic despite of $a\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{x\}$
and $\uparrow^{\mathbb{N}}\{x\}\times^{\mathsf{RLD}}a$ are atomic.\end{proof}
\begin{example}
There exists non-monovalued atomic reloid.\end{example}
\begin{proof}
From the previous example it follows that the atomic reloid $\uparrow^{\mathbb{N}}\{x\}\times^{\mathsf{RLD}}a$
is not monovalued.\end{proof}
\begin{example}
Non-convex reloids exist.\end{example}
\begin{proof}
Let $a$ be a non-trivial ultrafilter. Then $\id_{a}^{\mathsf{RLD}}$
is non-convex. This follows from the fact that only reloidal products
which are below $1_{\Base(a)}^{\mathsf{RLD}}$ are reloidal products
of ultrafilters and $\id_{a}^{\mathsf{RLD}}$ is not their join.\end{proof}
\begin{example}\label{fcd-comp-ent}
There exists (atomic) composable funcoids~$f$ and~$g$ such that
\[ H\in\up(g\circ f)\nRightarrow \exists F\in\up f,G\in\up g: H\sqsupseteq G\circ F. \]
\end{example}
\begin{proof}
Let $a$ be a nontrivial ultrafilter and $p$ be an arbitrary point, $f = a
\times^{\mathsf{FCD}} \{ p \}$, $g = \{ p \}
\times^{\mathsf{FCD}} a$. Then $g \circ f = a
\times^{\mathsf{FCD}} a$. Take $H = 1$. Let $F\in\up f$ and $G\in\up g$. We have $F \in \up (A_0
\times^{\mathsf{FCD}} \{ p \})$, $G \in \up (\{ p \}
\times^{\mathsf{FCD}} A_1)$ where $A_0, A_1 \in \up a$ (take $A_0=\rsupfun{F}@\{p\}$ and similarly for~$A_1$). Thus $G
\circ F \sqsupseteq A_0 \times A_1$ and so $H \notin \up (G \circ F)$.
\end{proof}
\begin{example}
$\torldin f\ne\torldout f$ for a funcoid $f$.\end{example}
\begin{proof}
Let $f=1_{\mathbb{N}}^{\mathsf{FCD}}$. Then $\torldin f=\bigsqcup_{a\in\atoms^{\mathscr{F}(\mathbb{N})}}(a\times^{\mathsf{RLD}}a)$
and $\torldout f=1_{\mathbb{N}}^{\mathsf{RLD}}$. But we have shown
above $a\times^{\mathsf{RLD}}a\nsqsubseteq1_{\mathbb{N}}^{\mathsf{RLD}}$
for non-trivial ultrafilter $a$, and so $\torldin f\nsqsubseteq\torldout f$.\end{proof}
\begin{prop}
\label{fcd-meet-frechet}$1_{\mathfrak{U}}^{\mathsf{FCD}}\sqcap\uparrow^{\mathsf{FCD}(\mathfrak{U},\mathfrak{U})}((\mathfrak{U}\times\mathfrak{U})\setminus\id_{\mathfrak{U}})=\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}\ne\bot^{\mathsf{FCD}(\mathfrak{U},\mathfrak{U})}$
for every infinite set $\mathfrak{U}$.\end{prop}
\begin{proof}
Note that $\supfun{\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}}\mathcal{X}=\mathcal{X}\sqcap\Omega(\mathfrak{U})$
for every filter $\mathcal{X}$ on $\mathfrak{U}$.
Let $f=1_{\mathfrak{U}}^{\mathsf{FCD}}$, $g=\uparrow^{\mathsf{FCD}(\mathfrak{U},\mathfrak{U})}((\mathfrak{U}\times\mathfrak{U})\setminus\id_{\mathfrak{U}})$.
Let $x$ be a non-trivial ultrafilter on $\mathfrak{U}$. If $X\in\up x$
then $\card X\ge2$ (In fact, $X$ is infinite but we don't need this.)
and consequently $\rsupfun gX=\top^{\mathscr{F}(\mathfrak{U})}$.
Thus $\supfun gx=\top^{\mathscr{F}(\mathfrak{U})}$. Consequently
\[
\supfun{f\sqcap g}x=\supfun fx\sqcap\supfun gx=x\sqcap\top^{\mathscr{F}(\mathfrak{U})}=x.
\]
Also $\supfun{\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}}x=x\sqcap\Omega(\mathfrak{U})=x$.
Let now $x$ be a trivial ultrafilter. Then $\supfun fx=x$ and $\supfun gx=\top^{\mathscr{F}(\mathfrak{U})}\setminus x$.
So
\[
\supfun{f\sqcap g}x=\supfun fx\sqcap\supfun gx=x\sqcap(\top^{\mathscr{F}(\mathfrak{U})}\setminus x)=\bot^{\mathscr{F}(\mathfrak{U})}.
\]
Also $\supfun{\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}}x=x\sqcap\Omega(\mathfrak{U})=\bot^{\mathscr{F}(\mathfrak{U})}$.
So $\supfun{f\sqcap g}x=\supfun{\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}}x$
for every ultrafilter $x$ on $\mathfrak{U}$. Thus $f\sqcap g=\id_{\Omega(\mathfrak{U})}^{\mathsf{FCD}}$.\end{proof}
\begin{example}
There exist binary relations $f$ and $g$ such that $\uparrow^{\mathsf{FCD}(A,B)}f\sqcap\uparrow^{\mathsf{FCD}(A,B)}g\ne\uparrow^{\mathsf{FCD}(A,B)}(f\cap g)$
for some sets $A$, $B$ such that $f,g\subseteq A\times B$.\end{example}
\begin{proof}
From the proposition above.\end{proof}
\begin{example}
There exists a principal funcoid which is not a complemented element
of the lattice of funcoids.\end{example}
\begin{proof}
I will prove that quasi-complement of the funcoid $1_{\mathbb{N}}^{\mathsf{FCD}}$
is not its complement (it is enough by proposition~\ref{compl-is-pseud}). We have:
\begin{align*}
(1_{\mathbb{N}}^{\mathsf{FCD}})^{\ast} & =\\
\bigsqcup\setcond{c\in\mathsf{FCD}(\mathbb{N},\mathbb{N})}{c\asymp1_{\mathbb{N}}^{\mathsf{FCD}}} & \sqsupseteq\\
\bigsqcup\setcond{\uparrow^{\mathbb{N}}\{\alpha\}\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\beta\}}{\alpha,\beta\in\mathbb{N},\uparrow^{\mathbb{N}}\{\alpha\}\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\beta\}\asymp1_{\mathbb{N}}^{\mathsf{FCD}}} & =\\
\bigsqcup\setcond{\uparrow^{\mathbb{N}}\{\alpha\}\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\beta\}}{\alpha,\beta\in\mathbb{N},\alpha\ne\beta} & =\\
\uparrow^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}\bigcup\setcond{\{\alpha\}\times\{\beta\}}{\alpha,\beta\in\mathbb{N},\alpha\ne\beta} & =\\
\uparrow^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}(\mathbb{N}\times\mathbb{N}\setminus\id_{\mathbb{N}})
\end{align*}
(used corollary \ref{fcd-compl-join}). But by proved above $(1_{\mathbb{N}}^{\mathsf{FCD}})^{\ast}\sqcap1_{\mathbb{N}}^{\mathsf{FCD}}\ne\bot^{\mathscr{F}(\mathbb{N})}$.\end{proof}
\begin{example}
There exists a funcoid $h$ such that $\up h$ is not a filter.\end{example}
\begin{proof}
Consider the funcoid $h=\id_{\Omega(\mathbb{N})}^{\mathsf{FCD}}$.
We have (from the proof of proposition \ref{fcd-meet-frechet}) that
$f\in\up h$ and $g\in\up h$, but $f\sqcap g\notin\up h$.\end{proof}
\begin{example}
There exists a funcoid $h\ne\bot^{\mathsf{FCD}(A,B)}$ such that $\torldout h=\bot^{\mathsf{RLD}(A,B)}$.\end{example}
\begin{proof}
Consider $h=\id_{\Omega(\mathbb{N})}^{\mathsf{FCD}}$. By proved above
$h=f\sqcap g$ where $f=1_{\mathbb{N}}^{\mathsf{FCD}}=\uparrow^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}\id_{\mathbb{N}}$,
$g=\uparrow^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}(\mathbb{N}\times\mathbb{N}\setminus\id_{\mathbb{N}})$.
We have $\id_{\mathbb{N}},\mathbb{N}\times\mathbb{N}\setminus\id_{\mathbb{N}}\in\GR h$.
So
\[
\torldout h=\bigsqcap^{\mathsf{RLD}}\up h=\bigsqcap^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}\GR h\sqsubseteq\uparrow^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}(\id_{\mathbb{N}}\cap(\mathbb{N}\times\mathbb{N}\setminus\id_{\mathbb{N}}))=\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})};
\]
and thus $\torldout h=\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}$.\end{proof}
\begin{example}
There exists a funcoid $h$ such that $\tofcd\torldout h\ne h$.\end{example}
\begin{proof}
It follows from the previous example.\end{proof}
\begin{example}
$\torldin\tofcd f\ne f$ for some convex reloid $f$.\end{example}
\begin{proof}
Let $f=1_{\mathbb{N}}^{\mathsf{RLD}}$. Then $\tofcd f=1_{\mathbb{N}}^{\mathsf{FCD}}$.
Let $a$ be some non-trivial ultrafilter on $\mathbb{N}$. Then $\torldin\tofcd f\sqsupseteq a\times^{\mathsf{RLD}}a\nsqsubseteq1_{\mathbb{N}}^{\mathsf{RLD}}$
and thus $\torldin\tofcd f\nsqsubseteq f$.\end{proof}
\begin{example}
There exist composable funcoids $f$ and $g$ such that
\[
\torldout(g\circ f)\sqsupset\torldout g\circ\torldout f.
\]
\end{example}
\begin{proof}
$f=\id_{\Omega(\mathbb{N})}^{\mathsf{FCD}}$ and $g=\top^{\mathscr{F}(\mathbb{N})}\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\}$
for some $\alpha\in\mathbb{N}$. Then $\torldout f=\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}$
and thus $\torldout g\circ\torldout f=\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}$.
We have $g\circ f=\Omega(\mathbb{N})\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\}$.
$\torldout(\Omega(\mathbb{N})\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\})=\Omega(\mathbb{N})\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}$
by properties of funcoidal reloids.
% Really:
% \begin{align*}
% \torldout(\Omega(\mathbb{N})\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\}) & =\\
% \bigsqcap^{\mathsf{RLD}}\up(\Omega(\mathbb{N})\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\}) & =\\
% \bigsqcap_{K\in\up\Omega(\mathbb{N})}^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}(K\times\uparrow^{\mathbb{N}}\{\alpha\});\\
% F\in\up\bigsqcap_{K\in\up\Omega(\mathbb{N})}^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}(K\times\uparrow^{\mathbb{N}}\{\alpha\}) & \Leftrightarrow F\in\up\left(\bigsqcap_{K\in\up\Omega(\mathbb{N})}^{\mathscr{F}}K\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}\right)
% \end{align*}
% for every $F\in\subsets(\mathbb{N}\times\mathbb{N})$. Thus
% \[
% \bigsqcap_{K\in\up\Omega(\mathbb{N})}^{\mathsf{RLD}}(K\times\uparrow^{\mathbb{N}}\{\alpha\})=\bigsqcap_{K\in\up\Omega(\mathbb{N})}^{\mathscr{F}}K\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}=\Omega(\mathbb{N})\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}.
% \]
% So $\torldout(\Omega(\mathbb{N})\times^{\mathsf{FCD}}\uparrow^{\mathbb{N}}\{\alpha\})=\Omega(\mathbb{N})\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}$.
Thus $\torldout(g\circ f)=\Omega(\mathbb{N})\times^{\mathsf{RLD}}\uparrow^{\mathbb{N}}\{\alpha\}\ne\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}$.\end{proof}
\begin{conjecture}
For every composable funcoids~$f$ and~$g$
\[
\torldout(g\circ f)\sqsupseteq\torldout g\circ\torldout f.
\]
\end{conjecture}
\begin{example}
$\tofcd$ does not preserve binary meets.\end{example}
\begin{proof}
$\tofcd(1_{\mathbb{N}}^{\mathsf{RLD}}\sqcap(\top^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}\setminus1_{\mathbb{N}}^{\mathsf{RLD}}))=\tofcd\bot^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}=\bot^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}$.
On the other hand,
\begin{multline*}
\tofcd1_{\mathbb{N}}^{\mathsf{RLD}}\sqcap\tofcd(\top^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}\setminus1_{\mathbb{N}}^{\mathsf{RLD}})=\\
1_{\mathbb{N}}^{\mathsf{FCD}}\sqcap\uparrow^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}(\mathbb{N}\times\mathbb{N}\setminus\id_{\mathbb{N}})=\id_{\Omega(\mathbb{N})}^{\mathsf{FCD}}\ne\bot^{\mathsf{FCD}(\mathbb{N},\mathbb{N})}
\end{multline*}
(used proposition \ref{fcd-discr}).\end{proof}
\begin{cor}
$\tofcd$ is not an upper adjoint (in general).
\end{cor}
Considering restricting polynomials (considered as reloids) to ultrafilters,
it is simple to prove that each that restriction is injective if not
restricting a constant polynomial. Does this hold in general? No,
see the following example:
\begin{example}
There exists a monovalued reloid with atomic domain which is neither
injective nor constant (that is not a restriction of a constant function).\end{example}
\begin{proof}
(based on \cite{MO44055}) Consider the function $F\in\mathbb{N}^{\mathbb{N}\times\mathbb{N}}$
defined by the formula $(x,y)\mapsto x$.
Let $\omega_{x}$ be a non-trivial ultrafilter on the vertical line
$\{x\}\times\mathbb{N}$ for every $x\in\mathbb{N}$.
Let $T$ be the collection of such sets $Y$ that $Y\cap(\{x\}\times\mathbb{N})\in\omega_{x}$
for all but finitely many vertical lines. Obviously $T$ is a filter.
Let $\omega\in\atoms T$.
For every $x\in\mathbb{N}$ we have some $Y\in T$ for which $(\{x\}\times\mathbb{N})\cap Y=\emptyset$
and thus $\uparrow^{\mathbb{N}\times\mathbb{N}}(\{x\}\times\mathbb{N})\sqcap\omega=\bot^{\mathscr{F}(\mathbb{N}\times\mathbb{N})}$.
Let $g=(\uparrow^{\mathsf{RLD}(\mathbb{N},\mathbb{N})}F)|_{\omega}$.
If $g$ is constant, then there exist a constant function $G\in\up g$
and $F\cap G$ is also constant. Obviously $\dom\uparrow^{\mathsf{RLD}(\mathbb{N}\times\mathbb{N},\mathbb{N})}(F\cap G)\sqsupseteq\omega$.
The function $F\cap G$ cannot be constant because otherwise $\omega\sqsubseteq\dom\uparrow^{\mathsf{RLD}(\mathbb{N}\times\mathbb{N},\mathbb{N})}(F\cap G)\sqsubseteq\uparrow^{\mathbb{N}\times\mathbb{N}}(\{x\}\times\mathbb{N})$
for some $x\in\mathbb{N}$ what is impossible by proved above. So
$g$ is not constant.
Suppose that $g$ is injective. Then there exists an injection $G\in\up g$.
$F\sqcap G\in\up g$ is an injection which depends only on the first argument.
So $\dom(F\sqcap G)$ intersects each vertical line by atmost one element that
is $\overline{\dom(F\sqcap G)}$ intersects every vertical line by the whole
line or the line without one element. Thus $\overline{\dom(F\sqcap G)}\in T\sqsupseteq\omega$
and consequently $\dom(F\sqcap G)\notin\omega$ what is impossible.
Thus $g$ is neither injective nor constant.
\end{proof}
\section{Second product. Oblique product}
\begin{defn}
\index{product!second}$\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}=\torldout(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})$
for every filters $\mathcal{A}$ and $\mathcal{B}$. I will call it
\emph{second product} of filters $A$ and $\mathcal{B}$.\end{defn}
\begin{rem}
The letter $F$ is the above definition is from the word ``funcoid''.
It signifies that it seems to be impossible to define $\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}$
directly without referring to funcoidal product.\end{rem}
\begin{defn}
\index{product!oblique}\emph{Oblique products} of filters $\mathcal{A}$
and $\mathcal{B}$ are defined as
\begin{align*}
\mathcal{A}\ltimes\mathcal{B} & =\bigsqcap\setcond{\uparrow^{\mathsf{RLD}}f}{f\in\mathbf{Rel}(\Base(\mathcal{A}),\Base(\mathcal{B})),\exists B\in\up\mathcal{B}:\uparrow^{\mathsf{FCD}}f\sqsupseteq\mathcal{A}\times^{\mathsf{FCD}}\uparrow B};\\
\mathcal{A}\rtimes\mathcal{B} & =\bigsqcap\setcond{\uparrow^{\mathsf{RLD}}f}{f\in\mathbf{Rel}(\Base(\mathcal{A}),\Base(\mathcal{B})),\exists A\in\up\mathcal{A}:\uparrow^{\mathsf{FCD}}f\sqsupseteq\uparrow A\times^{\mathsf{FCD}}\mathcal{B}}.
\end{align*}
\end{defn}
\begin{prop}
~
\begin{enumerate}
\item $\mathcal{A} \ltimes B = \mathcal{A} \times^{\mathsf{RLD}}_F
B$ if $\mathcal{A}$ and $B$ are filters and $B$ is principal.
\item $A \rtimes \mathcal{B} = A \times^{\mathsf{RLD}}_F
\mathcal{B}$ if $A$ and $\mathcal{B}$ are filters and $A$ is principal.
\end{enumerate}
\end{prop}
\begin{proof}
$A \rtimes \mathcal{B} = \bigsqcap^{\mathsf{RLD}} \setcond{ f
}{ f \in \mathbf{Rel}, f \sqsupseteq A
\times^{\mathsf{FCD}} \mathcal{B} } = A
\times^{\mathsf{RLD}}_F \mathcal{B}$. The other is analogous.
\end{proof}
\begin{prop}
$\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}\sqsubseteq\mathcal{A}\ltimes\mathcal{B}\sqsubseteq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for every filters $\mathcal{A}$, $\mathcal{B}$.\end{prop}
\begin{proof}
~
\begin{align*}
\mathcal{A}\ltimes\mathcal{B} & \sqsubseteq\\
\bigsqcap\setcond{\uparrow^{\mathsf{RLD}}f}{f\in\mathbf{Rel}(\Base(\mathcal{A}),\Base(\mathcal{B})),\exists A\in\up\mathcal{A},B\in\up\mathcal{B}:\uparrow^{\mathsf{FCD}}f\sqsupseteq\uparrow A\times^{\mathsf{FCD}}\uparrow B} & \sqsubseteq\\
\bigsqcap\setcond{\uparrow A\times^{\mathsf{RLD}}\uparrow B}{A\in\up\mathcal{A},B\in\up\mathcal{B}} & =\\
\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}.\\
\mathcal{A}\ltimes\mathcal{B} & \sqsupseteq\\
\bigsqcap\setcond{\uparrow^{\mathsf{RLD}}f}{f\in\mathbf{Rel}(\Base(\mathcal{A}),\Base(\mathcal{B})),\uparrow^{\mathsf{FCD}}f\sqsupseteq\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}} & =\\
\bigsqcap\setcond{\uparrow^{\mathsf{RLD}}f}{f\in\up(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})} & =\\
\torldout(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}) & =\\
\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}.
\end{align*}
\end{proof}
\begin{conjecture}
$\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}\sqsubset\mathcal{A}\ltimes\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$.
\end{conjecture}
A stronger conjecture:
\begin{conjecture}
$\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}\sqsubset\mathcal{A}\ltimes\mathcal{B}\sqsubset\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$. Particularly, is
this formula true for $\mathcal{A}=\mathcal{B}=\Delta\sqcap\uparrow^{\mathbb{R}}]0;+\infty[$?
\end{conjecture}
The above conjecture is similar to Fermat Last Theorem as having no
value by itself but being somehow challenging to prove it (not expected
to be as hard as FLT however).
\begin{example}
$\mathcal{A}\ltimes\mathcal{B}\sqsubset\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$.\end{example}
\begin{proof}
It's enough to prove $\mathcal{A}\ltimes\mathcal{B}\neq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$.
Let $\Delta_{+}=\Delta\sqcap\uparrow^{\mathbb{R}}]0;+\infty[$. Let
$\mathcal{A}=\mathcal{B}=\Delta_{+}$.
Let $K=(\le)|_{\mathbb{R}\times\mathbb{R}}$.
Obviously $K\notin\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$.
$\mathcal{A}\ltimes\mathcal{B}\sqsubseteq\uparrow^{\mathsf{RLD}(\Base(\mathcal{A}),\Base(\mathcal{B}))}K$
and thus $K\in\up(\mathcal{A}\ltimes\mathcal{B})$ because
\[
\uparrow^{\mathsf{FCD}(\Base(\mathcal{A}),\Base(\mathcal{B}))}K\sqsupseteq\Delta_{+}\times^{\mathsf{FCD}}\uparrow B=\mathcal{A}\times^{\mathsf{FCD}}\uparrow B
\]
for $B=]0;+\infty[$
because for every $X\in\corestar\Delta_{+}$ there is $x\in X$ such that $x\in]0;\epsilon[$ (for every positive $\epsilon$)
and thus $]\epsilon;+\infty[\subseteq\rsupfun{K}\{x\}$ so having
\[\rsupfun{K}X = ]0;+\infty[ \in \GR\rsupfun{\Delta_{+}\times^{\mathsf{FCD}}\uparrow B}X.\]
Thus $\mathcal{A}\ltimes\mathcal{B}\neq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$.\end{proof}
\begin{example}
\label{secprod-neq}$\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}\sqsubset\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$.\end{example}
\begin{proof}
This follows from the above example.\end{proof}
\begin{conjecture}
$(\mathcal{A}\ltimes\mathcal{B})\sqcap(\mathcal{A}\rtimes\mathcal{B})\ne\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$.\end{conjecture}
(Earlier I presented a proof of the negation of this conjecture, but it was in error.)
\begin{example}
$(\mathcal{A}\ltimes\mathcal{B})\sqcup(\mathcal{A}\rtimes\mathcal{B})\sqsubset\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$
for some filters $\mathcal{A}$, $\mathcal{B}$.\end{example}
\begin{proof}
(based on \cite{MO72638}) Let $\mathcal{A}=\mathcal{B}=\Omega(\mathbb{N})$.
It's enough to prove $(\mathcal{A}\ltimes\mathcal{B})\sqcup(\mathcal{A}\rtimes\mathcal{B})\neq\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$.
Let $X\in\up\mathcal{A}$, $Y\in\up\mathcal{B}$ that is $X\in\Omega(\mathbb{N})$,
$Y\in\Omega(\mathbb{N})$.
Removing one element $x$ from $X$ produces a set $P$. Removing
one element $y$ from $Y$ produces a set $Q$. Obviously $P\in\Omega(\mathbb{N})$,
$Q\in\Omega(\mathbb{N})$.
Obviously $(P\times\mathbb{N})\cup(\mathbb{N}\times Q)\in\up((\mathcal{A}\ltimes\mathcal{B})\sqcup(\mathcal{A}\rtimes\mathcal{B}))$.
$(P\times\mathbb{N})\cup(\mathbb{N}\times Q)\nsupseteq X\times Y$
because $(x,y)\in X\times Y$ but $(x,y)\notin(P\times\mathbb{N})\cup(\mathbb{N}\times Q)$
for every $X\in\up\mathcal{A}$, $Y\in\up\mathcal{B}$.
Thus some $(P\times\mathbb{N})\cup(\mathbb{N}\times Q)\notin\up(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})$
by properties of filter bases.\end{proof}
\begin{example}
$\torldout\tofcd f\ne f$ for some convex reloid $f$.\end{example}
\begin{proof}
Let $f=\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$ where $\mathcal{A}$
and $B$ are from example \ref{secprod-neq}.
$\tofcd(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B}$
by proposition \ref{fcd-of-rprod}.
So $\torldout\tofcd(\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B})=\torldout(\mathcal{A}\times^{\mathsf{FCD}}\mathcal{B})=\mathcal{A}\times_{F}^{\mathsf{RLD}}\mathcal{B}\ne\mathcal{A}\times^{\mathsf{RLD}}\mathcal{B}$.\end{proof}