-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-equalizers.tex
193 lines (149 loc) · 6.46 KB
/
chap-equalizers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\chapter{Equalizers and co-Equalizers in Certain Categories}
It is a rough draft. Errors are possible.
\fxwarning{Change notation $\prod$ $\rightarrow$ $\prod^{(L)}$.}
\section{Equalizers}
Categories $\cont (\mathcal{C})$ are defined above.
I will denote $W$ the forgetful functor from $\cont
(\mathcal{C})$ to $\mathcal{C}$.
In the definition of the category $\cont (\mathcal{C})$ take
values of $\uparrow$ as principal morphisms. \fxwarning{Wording.}
\begin{lem}
Let $f : X \rightarrow Y$ be a morphism of the category
$\cont (\mathcal{C})$ where $\mathcal{C}$ is a concrete
category (so $W f = \uparrow \varphi$ for a $\mathbf{Rel}$-morphism
$\varphi$ because $f$ is principal) and $\im \varphi = A \subseteq
\Ob Y$. Factor it $\varphi = \mathcal{E}^{\Ob Y} \circ u$
where $u : \Ob X \rightarrow A$ using properties of
$\mathbf{Set}$. Then $u$ is a morphism of $\cont
(\mathcal{C})$ (that is a continuous function $X \rightarrow \iota_A Y$).
\end{lem}
\begin{proof}
$(\mathcal{E}^{\Ob Y})^{- 1} \circ \varphi = (\mathcal{E}^{\Ob Y})^{- 1} \circ \mathcal{E}^{\Ob Y} \circ u$;
$(\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ \uparrow \varphi
= (\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ \mathcal{E}_{\mathcal{C}}^{\Ob Y} \circ \uparrow u$;
$(\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ \uparrow \varphi
= \uparrow u$;
$X \sqsubseteq (\uparrow u)^{- 1} \circ \pi_A Y \circ \uparrow u
\Leftrightarrow X \sqsubseteq (\uparrow \varphi)^{- 1} \circ
\mathcal{E}_{\mathcal{C}}^{\Ob Y} \circ \pi_A Y \circ
(\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ \uparrow \varphi
\Leftrightarrow X \sqsubseteq (\uparrow \varphi)^{- 1} \circ
\mathcal{E}_{\mathcal{C}}^{\Ob Y} \circ
(\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ Y \circ
\mathcal{E}_{\mathcal{C}}^{\Ob Y} \circ
(\mathcal{E}_{\mathcal{C}}^{\Ob Y})^{- 1} \circ \uparrow \varphi
\Leftrightarrow X \sqsubseteq (\uparrow \varphi)^{- 1} \circ Y \circ
\uparrow \varphi \Leftrightarrow X \sqsubseteq (W f)^{- 1} \circ Y \circ W
f$ what is true by definition of continuity.
\end{proof}
Equational definition of equalizers:
\url{http://nforum.mathforge.org/comments.php?DiscussionID=5328/}
\begin{thm}
The following is an equalizer of parallel morphisms $f, g : A \rightarrow B$
of category $\cont (\mathcal{C})$:
\begin{itemize}
\item the object $X = \iota_{\setcond{ x \in \Ob A }{
f x = g x }} A$;
\item the morphism $\mathcal{E}^{\Ob X, \Ob A}$ considered
as a morphism $X \rightarrow A$.
\end{itemize}
\end{thm}
\begin{proof}
Denote $e = \mathcal{E}^{\Ob X, \Ob A}$.
Let $f \circ z = g \circ z$ for some morphism $z$.
Let's prove $e \circ u = z$ for some $u : \Src z \rightarrow X$.
Really, as a morphism of $\mathbf{Set}$ it exists and is unique.
Consider $z$ as as a generalized element.
$f (z) = g (z)$. So $z \in X$ (that is $\Dst z \in X$). Thus $z = e
\circ u$ for some $u$ (by properties of $\mathbf{Set}$). The
generalized element $u$ is a $\cont (\mathcal{C})$-morphism
because of the lemma above. It is unique by properties of
$\mathbf{Set}$.
\end{proof}
We can (over)simplify the above theorem by the obvious below:
\begin{obvious}
$\setcond{ x \in \Ob A }{ f x = g x } = \dom (f \cap g)$.
\end{obvious}
\section{Co-equalizers}
\url{http://math.stackexchange.com/questions/539717/how-to-construct-co-equalizers-in-mathbftop}
Let $\sim$ be an equivalence relation. Let's denote $\pi$ its canonical
projection.
\begin{defn}
$f / \sim = \uparrow \pi \circ f \circ \uparrow \pi^{- 1}$ for every
morphism $f$.
\end{defn}
\begin{obvious}
$\Ob (f / \sim) = (\Ob f) / r$.
\end{obvious}
\begin{obvious}
$f / \sim = \langle \uparrow^{\mathsf{FCD}} \pi \times^{(C)}
\uparrow^{\mathsf{FCD}} \pi \rangle f$ for every morphism
$f$.
\end{obvious}
To define co-equalizers of morphisms $f$ and $g$ let $\sim$ be is the smallest
equivalence relation such that $f x = g x$.
\begin{lem}
Let $f : X \rightarrow Y$ be a morphism of the category
$\cont (\mathcal{C})$ where $\mathcal{C}$ is a concrete
category (so $W f = \uparrow \varphi$ for a $\mathbf{Rel}$-morphism
$\varphi$ because $f$ is principal) such that $\varphi$ respects $\sim$.
Factor it $\varphi = u \circ \pi$ where $u : \Ob (X / \sim)
\rightarrow \Ob Y$ using properties of $\mathbf{Set}$. Then
$u$ is a morphism of $\cont (\mathcal{C})$ (that is a
continuous function $X / \sim \rightarrow Y$).
\end{lem}
\begin{proof}
$f \circ X \circ f^{- 1} \sqsubseteq Y$; $\uparrow u \circ \uparrow \pi
\circ X \circ \uparrow \pi^{- 1} \circ \uparrow u^{- 1} \sqsubseteq Y$;
$\uparrow u \in \mathrm{C} (\uparrow \pi \circ X \circ \uparrow \pi^{- 1} ,
Y) = \mathrm{C} (X / \sim , Y)$.
\end{proof}
\begin{thm}
The following is a co-equalizer of parallel morphisms $f, g : A \rightarrow
B$ of category $\cont (\mathcal{C})$:
\begin{itemize}
\item the object $Y = f / \sim$;
\item the morphism $\pi$ considered as a morphism $B \rightarrow Y$.
\end{itemize}
\end{thm}
\begin{proof}
Let $z \circ f = z \circ g$ for some morphism $z$.
Let's prove $u \circ \pi = z$ for some $u : Y \rightarrow \Dst z$.
Really, as a morphism of $\mathbf{Set}$ it exists and is unique.
$\Src z \in Y$. Thus $z = u \circ \pi$ for some $u$ (by properties of
$\mathbf{Set}$). The function $u$ is a $\cont
(\mathcal{C})$-morphism because of the lemma above. It is unique by
properties of $\mathbf{Set}$ ($\pi$ obviously respects equivalence
classes).
\end{proof}
\section{Rest}
\begin{thm}
The categories $\cont (\mathcal{C})$ (for example in
$\mathbf{Fcd}$ and $\mathbf{Rld}$) are complete.
\fxwarning{Note that small complete category is a preorder!}
\end{thm}
\begin{proof}
They have products and equalizers.
\end{proof}
\begin{thm}
The categories $\cont (\mathcal{C})$ (for example in
$\mathbf{Fcd}$ and $\mathbf{Rld}$) are co-complete.
\end{thm}
\begin{proof}
They have co-products and co-equalizers.
\end{proof}
\begin{defn}
I call morphisms $f$ and $g$ of a category with embeddings
\emph{equivalent} ($f \sim g$) when there exist a morphism $p$ such that
$\Src p \sqsubseteq \Src f$, $\Src p \sqsubseteq
\Src g$, $\Dst p \sqsubseteq \Dst f$, $\Dst p
\sqsubseteq \Dst g$ and $\iota_{\Src f, \Dst f} p = f$ and
$\iota_{\Src g, \Dst g} p = g$.
\end{defn}
\begin{problem}
Find under which conditions:
\begin{enumerate}
\item Equivalence of morphisms is an equivalence relation.
\item Equivalence of morphisms is a congruence for our category.
\end{enumerate}
\end{problem}