-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap-compact.tex
365 lines (295 loc) · 13.5 KB
/
chap-compact.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
\chapter{Compact funcoids}
Compact funcoids are defined. Attempted to prove that under certain conditions the
reloid corresponding to a compact funcoid is the neighborhood of the diagonal
of the product funcoid.
This is a rough partial draft. The proofs are with errors.
\fxnote{The below examples also show that subatomic product does not coincide with Tychonoff product.}
\section{The rest}
\begin{defn}
A funcoid $f$ is \emph{directly compact} iff
\[ \forall \mathcal{F} \in \mathfrak{F}: (\supfun{f}
\mathcal{F} \neq \bot \Rightarrow \Cor \supfun{f} \mathcal{F}
\neq \bot). \]
\end{defn}
\begin{obvious}
A funcoid $f$ is directly compact iff $\forall a \in \atoms \dom f :
\Cor \supfun{f} a \neq \bot$.
\end{obvious}
\begin{obvious}
A reflexive funcoid~$f$ is directly compact iff
\[ \forall \mathcal{F} \in \mathfrak{F}: (\mathcal{F} \neq \bot \Rightarrow \Cor \supfun{f} \mathcal{F}
\neq \bot). \]
\end{obvious}
\begin{defn}
A funcoid $f$ is \emph{reversely compact} iff $f^{- 1}$ is directly
compact.
\end{defn}
\begin{defn}
A funcoid is \emph{compact} iff it is both directly compact and reversely
compact.
\end{defn}
\begin{prop}
$\prod^{\mathsf{RLD}} a = \uparrow^{\mathsf{RLD}} \prod_{i \in
\dom a} (\uparrow^{\mathsf{RLD}})^{- 1} a_i$ for every indexed
family $a$ of principal filters.
\end{prop}
\begin{proof}
Because $\prod_{i \in \dom a} (\uparrow^{\mathsf{RLD}})^{- 1} a_i
\in \up \prod^{\mathsf{RLD}} a$.
\fxwarning{More detailed proof.}
\end{proof}
\begin{lem}
$\prod^{\mathsf{RLD}}_{i \in \dom a} \Cor a_i = \Cor
\prod^{\mathsf{RLD}} a$.
\end{lem}
\begin{proof}
$\Cor \prod^{\mathsf{RLD}} a = \bigsqcap \left\{
\uparrow^{\mathsf{RLD}} \prod A \hspace{1em} | \hspace{1em} A \in
\up a \right\} = \uparrow^{\mathsf{RLD}} \bigcap \left\{ \prod A
\hspace{1em} | \hspace{1em} A \in \up a \right\} =
\uparrow^{\mathsf{RLD}} \bigcap \left\{ \prod A \hspace{1em} |
\hspace{1em} A \in \subsets \prod \mathfrak{U}, \forall i \in \dom a
: A_i \in \up a_i \right\} = \uparrow^{\mathsf{RLD}} \bigcap
\left\{ \prod \bigcap K_i \hspace{1em} | \hspace{1em} K \in \subsets
\subsets \prod \mathfrak{U}, \forall i \in \dom a : K_i \in
\subsets \up a_i \right\} = \uparrow^{\mathsf{RLD}} \bigcap
\left\{ \prod (\uparrow^{\mathsf{RLD}})^{- 1} \Cor a_i
\hspace{1em} | \hspace{1em} i \in \dom a \right\} =
\uparrow^{\mathsf{RLD}} \prod_{i \in \dom
a}^{\mathsf{RLD}} \Cor a_i$.
\fxwarning{Check for little errors.}
\end{proof}
\begin{cor}
$\prod^{\mathsf{RLD}}_{i \in n} \langle \CoCompl f_i \rangle
\mathcal{X}_i = \left\langle \CoCompl \prod^{(A)} f \right\rangle
\prod^{\mathsf{RLD}} \mathcal{X}$ for every $n$-indexed families $f$
of funcoids and $\mathcal{X}$ of filters on the same set (with $\Src
f_i = \Base (\mathcal{X}_i)$ for every $i \in n$).
\end{cor}
\begin{proof}
~
\begin{eqnarray*}
\prod^{\mathsf{RLD}}_{i \in n} \langle \CoCompl f_i \rangle
\mathcal{X}_i & = & \\
\prod^{\mathsf{RLD}}_{i \in n} \Cor \langle f_i \rangle
\mathcal{X}_i & = & \\
\Cor \prod^{\mathsf{RLD}}_{i \in n} \langle f_i \rangle
\mathcal{X}_i & = & \text{(*)}\\
\Cor \prod^{\mathsf{RLD}}_{i \in n} \langle f_i \rangle
\Pr^{\mathsf{RLD}}_i \left( \prod^{\mathsf{RLD}} \mathcal{X}
\right) & = & \\
\Cor \left\langle \prod^{(A)} f \right\rangle
\prod^{\mathsf{RLD}} \mathcal{X} & = & \\
\left\langle \CoCompl \prod^{(A)} f \right\rangle
\prod^{\mathsf{RLD}} \mathcal{X} . & &
\end{eqnarray*}
(*) You should verify the special case when $\mathcal{X}_i =
\bot^{\mathfrak{F}}$ for some $i$.
\end{proof}
\begin{thm}
Let $f$ be an indexed family of funcoids. \fxnote{Reverse theorem (for non-least funcoids).}
\begin{enumerate}
\item $\prod f$ is directly compact if every $f_i$ is directly compact.
\item $\prod f$ is reversely compact if every $f_i$ is reversely compact.
\item $\prod f$ is compact if every $f_i$ is compact.
\end{enumerate}
\end{thm}
\begin{proof}
It is enough to prove only the first statement.
Let each $f_i$ is directly compact.
Let $\left\langle \prod f \right\rangle a \neq \bot$. Then $\left\langle \prod
f \right\rangle a = \left\langle \prod^{(A)} f \right\rangle a =
\prod^{\mathsf{RLD}}_{i \in \dom f} \langle f_i \rangle
\Pr^{\mathsf{RLD}}_i a$. Thus every $\langle f_i \rangle
\Pr^{\mathsf{RLD}}_i a \neq \bot$. Consequently by compactness
$\Cor \langle f_i \rangle \Pr^{\mathsf{RLD}}_i a \neq \bot$;
$\prod_{i \in \dom f} \Cor \langle f_i \rangle
\Pr^{\mathsf{RLD}}_i a \neq \bot$; $\Cor \prod_{i \in \dom
f} \langle f_i \rangle \Pr^{\mathsf{RLD}}_i a \neq \bot$; $\Cor
\left\langle \prod f \right\rangle a \neq \bot$.
So $\prod f$ is directly compact.
\end{proof}
\begin{prop}
The following expressions are pairwise equal:
\begin{enumerate}
\item\label{ff-id-s} $\langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}}$;
\item\label{ff-id-at} $\bigsqcup \setcond{ \langle f \times^{(A)} f \rangle p }
{p \in \atoms 1^{\mathsf{RLD}} }$;
\item\label{ff-id-p} $\bigsqcup \setcond{ \supfun{f} x \times^{\mathsf{RLD}}
\supfun{f} x }{ x \in \atoms^{\mathscr{F}} }$;
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item[\ref{ff-id-s}$\Leftrightarrow$\ref{ff-id-at}] Theorem~\bookref{fcd-atoms}.
\item[\ref{ff-id-at}$\Leftrightarrow$\ref{ff-id-p}]
$\bigsqcup \setcond{ \langle f \times^{(A)} f \rangle p }{p \in \atoms 1^{\mathsf{RLD}} } =
\bigsqcup \setcond{ \supfun{f}\dom p \times^{\mathsf{RLD}} \supfun{f}\im p }{p \in \atoms 1^{\mathsf{RLD}} } =
\bigsqcup \setcond{ \supfun{f} x \times^{\mathsf{RLD}} \supfun{f} x }{ x \in \atoms^{\mathscr{F}} }$.
\end{widedisorder}
\end{proof}
\begin{prop}\label{ff-ge-g}
Let $g$ be a reloid and $f = \tofcd g$ and $f=f\circ f^{-1}$. Then $\langle f
\times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}} \sqsupseteq g$.
\end{prop}
\begin{proof}
$\langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}} \nasymp
\uparrow^{\mathsf{RLD}} Y \Leftrightarrow
\uparrow^{\mathsf{RLD}} 1^{\mathsf{RLD}} \mathrel{[f \times^{(A)} f]}
\uparrow^{\mathsf{RLD}} Y \Leftrightarrow
\uparrow^{\mathsf{FCD}} 1^{\mathsf{RLD}} \mathrel{[f \times^{(C)} f]}
\uparrow^{\mathsf{FCD}} Y \Leftrightarrow f \circ
\uparrow^{\mathsf{FCD}} 1^{\mathsf{RLD}} \circ f^{- 1} \nasymp
\uparrow^{\mathsf{FCD}} Y \Leftrightarrow f \circ f^{- 1} \nasymp
\uparrow^{\mathsf{FCD}} Y \Leftrightarrow f \nasymp
\uparrow^{\mathsf{FCD}} Y \Leftrightarrow f \sqcap
\uparrow^{\mathsf{FCD}} Y \neq \bot \Leftarrow
\torldin (f \sqcap \uparrow^{\mathsf{FCD}}
Y) \neq \bot \Leftrightarrow \torldin f \sqcap
\torldin \uparrow^{\mathsf{FCD}} Y \neq \bot
\Leftarrow \torldin f \sqcap
\torldout \uparrow^{\mathsf{FCD}} Y \neq \bot
\Leftrightarrow \torldin f \sqcap
\uparrow^{\mathsf{RLD}} Y \neq \bot \Leftrightarrow
\torldin \tofcd g \sqcap
\uparrow^{\mathsf{RLD}} Y \neq \bot \Leftarrow g \sqcap
\uparrow^{\mathsf{RLD}} Y \neq \bot \Leftrightarrow g \nasymp
\uparrow^{\mathsf{RLD}} Y$.
\end{proof}
\begin{prop}
Let $g$ be a reloid and $f = \tofcd g$ and $f=f\circ f^{-1}$. Then
$\rsupfun{f \times^{\mathrm{in}} f} 1^{\mathsf{RLD}} \sqsupseteq g$.
\end{prop}
\begin{proof}
$\rsupfun{f \times^{\mathrm{in}} f} 1^{\mathsf{RLD}} =
\rsupfun{\torldin f\circ^{(C)}\torldin f} 1^{\mathsf{RLD}} =
\torldin f\circ 1^{\mathsf{RLD}} \circ \torldin f^{-1} =
\torldin f\circ \torldin f^{-1} =
\torldin (f\circ f^{-1}) = \torldin f = \torldin\tofcd g \sqsupseteq g$.
\end{proof}
\begin{lem}
$\Cor \langle f \times^{(A)} f \rangle^{\ast} g \sqsubseteq 1^{\mathsf{RLD}}$ if
$\tofcd g = f$ for a $T_1$-separable reloid $g$.
\end{lem}
\subsection{Propositions from~\cite{bourb-top-1} which do not hold for our products}
In this subsection I present counter-examples against modified propositions from~\cite{bourb-top-1}
in which I replace Tychonoff product with our subatomic or cross-inner products.
TODO: Consider as a counter-example the non-transitive compact funcoid
$\setcond{(x,y)}{x,y\in [0;1], |x-y|<\frac{1}{3}}$.
\begin{example}
$\rsupfun{1^{\mathbf{Rel}} \times^{(A)} 1^{\mathbf{Rel}}} 1^{\mathbf{Rel}} \sqsupset 1^{\mathbf{Rel}}$.
\end{example}
\begin{proof}
$\rsupfun{1^{\mathbf{Rel}} \times^{(A)} 1^{\mathbf{Rel}}} 1^{\mathbf{Rel}} =
\bigsqcup_{x\in\atoms 1^{\mathbf{Rel}}} \rsupfun{1^{\mathbf{Rel}} \times^{(A)} 1^{\mathbf{Rel}}} x =
\bigsqcup_{x\in\atoms 1^{\mathbf{Rel}}} \left( \rsupfun{1^{\mathbf{Rel}}} \dom x \times^{\mathsf{RLD}} \rsupfun{1^{\mathbf{Rel}}} \im x \right) =
\bigsqcup_{x\in\atoms 1^{\mathbf{Rel}}} \left( \dom x \times^{\mathsf{RLD}} \im x \right) =
\bigsqcup_{x\in\atoms \mathscr{F}} ( x \times^{\mathsf{RLD}} x ) \sqsupset
1^{\mathbf{Rel}}$.
\end{proof}
Statement~2 on page~172 of~\cite{bourb-top-1} does not survive modification:
\begin{example}
~
\begin{enumerate}
\item\label{vmv} There is a funcoid~$f$ and $V \in \up f$ such that
$V \circ M \circ V^{- 1} \notin \up \rsupfun{f
\times^{(A)} f } M$.
\item\label{ffm} $\langle f \times^{(A)} f \rangle^{\ast} M \sqsupset g \circ
\uparrow^{\mathsf{RLD}} M \circ g^{- 1}$ for some reloid~$g$, binary relation~$M$ and
the funcoid~$f=\tofcd g$.
\end{enumerate}
\end{example}
\begin{proof}
~
\begin{widedisorder}
\item[\ref{vmv}] Take $f=M=V=1^{\mathbf{Rel}}$ and use the example above.
\item[\ref{ffm}] Take $f=g=M=1^{\mathbf{Rel}}$ and use the example above.
\end{widedisorder}
\end{proof}
\begin{cor}
$\langle f \times^{(A)} f \rangle^{\ast} M \sqsubseteq \langle f \times^{(C)} f
\rangle^{\ast} M$.
\end{cor}
\begin{cor}
$V \circ V^{- 1} \in \up \langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}}$; $f
\circ f^{- 1} \sqsupseteq \langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}}$.
\end{cor}
\begin{proof}
??
\end{proof}
\begin{rem}
I attempted to generalize the below theorem more than the standard general
topology theorem about correspondence of compact and uniform spaces, but
haven't really succeeded much, as it appears to be needed that the reloid in
question is reflexive, symmetric, and transitive, that is just a uniform
space as in the standard general topology.
\end{rem}
Does the reverse inequality hold, that is
$g \sqsupseteq \rsupfun{f \times^{(A)} f} 1^{\mathsf{RLD}}$
and/or
$g \sqsupseteq \rsupfun{f \times^{\mathrm{in}} f} 1^{\mathsf{RLD}}$
(for compact~$f=\tofcd g$)?
\begin{grayed}
\begin{thm}
$g\sqsubseteq\rsupfun{f \times^{(A)} f} 1^{\mathsf{RLD}}$
for compact~$f=\tofcd g$.
(We have already proved this in an easier way, and not only for compact funcoids.)
\end{thm}
Suppose there is $U \in \up \langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}}$
such that $U \notin \up g$.
Then $\setcond{ V \setminus U }{ V \in \up g } = g \setminus U$ would be a proper filter.
Thus by reflexivity $\langle f \times^{(A)} f \rangle^{\ast} (g \setminus U) \neq
\bot$.
By compactness of $f \times^{(A)} f$, $\Cor \langle f \times^{(A)} f \rangle^{\ast}
(g \setminus U) \neq \bot$.
Suppose $\uparrow \{ (x , x) \} \sqsubseteq \langle f \times^{(A)} f \rangle^{\ast}
(g \setminus U)$; then $g \setminus U \nasymp \langle f^{- 1} \times^{(A)} f^{- 1}
\rangle \{ (x , x) \}$; $U \sqsubset \langle f^{- 1} \times^{(A)} f^{- 1} \rangle \{
(x , x) \} \sqsubseteq \langle f^{- 1} \times^{(A)} f^{- 1} \rangle 1^{\mathsf{RLD}}$ what is
impossible.
Thus there exist $x \neq y$ such that $\{ (x , y) \} \sqsubseteq \Cor
\langle f \times^{(A)} f \rangle^{\ast} (g \setminus U)$. Thus $\{ (x , y) \}
\sqsubseteq \langle f \times^{(A)} f \rangle^{\ast} g$.
Thus by the lemma $\{ (x , y) \} \sqsubseteq 1^{\mathsf{RLD}}$ what is impossible. So $U
\in \up g$.
We have $\up \langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}} \subseteq
\up g$; $\langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}} \sqsupseteq g$.
\begin{cor}
Let $f$ is a $T_1$-separable (the same as $T_2$ for symmetric transitive)
compact funcoid and $g$ is a uniform space (reflexive, symmetric, and
transitive endoreloid) such that $\tofcd g = f$. Then $g =
\langle f \times^{(A)} f \rangle^{\ast} 1^{\mathsf{RLD}}$.
\end{cor}
\end{grayed}
An (incomplete) attempt to prove one more theorem follows:
\begin{thm}
Let $\mu$ and $\nu$ be uniform spaces, $\tofcd
\mu$ be a compact funcoid. Then a map $f$ is a continuous map from
$\tofcd \mu$ to $\tofcd \nu$ iff $f$ is
a (uniformly) continuous map from $\mu$ to $\nu$.
\end{thm}
\begin{proof}
\fxerror{errors in this proof.}
http://math.stackexchange.com/questions/665202/bourbaki-on-the-fact-that-continuous-function-on-a-compact-is-uniformly-continuo/670956?iemail=1\&noredirect=1\#670956
We have $\mu= \langle \tofcd \mu \times
\tofcd \mu \rangle \uparrow^{\mathsf{RLD}} 1^{\mathsf{RLD}}$
$f \in \mathrm{C}_? (\tofcd \mu, \tofcd
\nu)$. Then
\[ f \times^{(A)} f \in \mathrm{C}_? (\tofcd (\mu \times^{(A)}
\mu) , \tofcd (\nu \times^{(A)} \nu)) \]
$(f \times^{(A)} f) \circ \tofcd (\mu \times^{(A)} \mu)
\sqsubseteq \tofcd (\nu \times^{(A)} \nu) \circ (f \times^{(A)} f)$
For every $V \in \up (\nu \times^{(A)} \nu)$ we have $\langle g^{- 1} \rangle
V \in \langle \tofcd (\mu \times^{(A)} \mu) \rangle
\{ y \}$ for some $y$.
$\langle g^{- 1} \rangle V \in \langle \tofcd \mu \times^{(A)}
\tofcd \mu \rangle \uparrow^{\mathsf{RLD}} 1^{\mathsf{RLD}}
= \up \mu$
$\supfun{g} \langle g^{- 1} \rangle V \sqsubseteq V$
We need to prove $f \in \mathrm{C} (\mu, \nu)$ that is $\forall p \in
\up \nu \exists q \in \up \mu: \supfun{f} q
\sqsubseteq p$. But this follows from the above.
\end{proof}
\fxnote{A space is compact if and only if it is both, complete and totally bounded.}
\url{http://math.stackexchange.com/questions/1101995/non-symmetric-version-of-compact-totally-bounded-complete}