forked from EndlessCheng/codeforces-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath_matrix.go
410 lines (375 loc) · 9.65 KB
/
math_matrix.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
package copypasta
import (
. "fmt"
"io"
"math"
)
/* 矩阵加速
https://zh.wikipedia.org/wiki/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0%E5%88%97#%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8%E8%A7%A3%E6%B3%95
https://zhuanlan.zhihu.com/p/56444434
https://codeforces.com/blog/entry/80195 Matrix Exponentiation video + training contest
哈密尔顿–凯莱定理 Cayley–Hamilton theorem
特征多项式是零化多项式
https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 https://www.cnblogs.com/gzy-cjoier/p/9741950.html
模板题 https://www.luogu.com.cn/problem/P1939 https://ac.nowcoder.com/acm/contest/6357/A
TR 的数列 https://blog.csdn.net/zyz_bz/article/details/88993616
挑战 P202 一维方块染色 http://poj.org/problem?id=3734
3xM 的格子,其中有一些障碍物,求从第二行最左走到第二行最右的方案数,每次可以向右/右上/右下走一步 https://codeforces.com/problemset/problem/954/F
todo poj 2345 3532 3526
*/
// 一些题目:https://oi-wiki.org/math/matrix/
func readMatrix(in io.Reader, n, m int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int64, m)
//a[i] = make([]int64, m, m+1) // 方便高斯消元
for j := range a[i] {
Fscan(in, &a[i][j])
}
}
return a
}
func copyMatrix(a matrix) matrix {
b := make(matrix, len(a))
for i, row := range a {
b[i] = append([]int64(nil), row...)
}
return b
}
// 顺时针转 90°
func rotateMatrix(a matrix) matrix {
b := make(matrix, len(a[0]))
for j := range b {
b[j] = make([]int64, len(a))
for i, row := range a {
b[j][len(a)-1-i] = row[j]
}
}
return b
}
// 矩阵快速幂
type matrix [][]int64
func newMatrix(n, m int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int64, m)
}
return a
}
func newIdentityMatrix(n int) matrix {
a := make(matrix, n)
for i := range a {
a[i] = make([]int64, n)
a[i][i] = 1
}
return a
}
func (a matrix) mul(b matrix) matrix {
const mod int64 = 1e9 + 7 // 998244353
c := newMatrix(len(a), len(b[0]))
for i, row := range a {
for j := range b[0] {
for k, v := range row {
c[i][j] = (c[i][j] + v*b[k][j]) % mod
}
if c[i][j] < 0 {
c[i][j] += mod
}
}
}
return c
}
func (a matrix) pow(n int64) matrix {
res := newIdentityMatrix(len(a))
for ; n > 0; n >>= 1 {
if n&1 > 0 {
res = res.mul(a)
}
a = a.mul(a)
}
return res
}
// a(n) = p*a(n-1) + q*a(n-2)
// 注意:数列从 0 开始,若题目从 1 开始则输入的 n 为 n-1
// https://ac.nowcoder.com/acm/contest/9247/A
// m 项递推式,以及包含常数项的情况见《挑战》P201
// a(n) = a(n-1) + a(n-m) https://codeforces.com/problemset/problem/1117/D
func calcFibonacci(p, q, a0, a1, n int64) int64 {
const mod int64 = 1e9 + 7 // 998244353
//n--
if n == 0 {
return (a0%mod + mod) % mod
}
if n == 1 {
return (a1%mod + mod) % mod
}
m := matrix{
{p, q},
{1, 0},
}.pow(n - 1)
return ((m[0][0]*a1+m[0][1]*a0)%mod + mod) % mod
//return m[0][0]
}
//
func (a matrix) add(b matrix) matrix {
c := newMatrix(len(a), len(a[0]))
for i, row := range a {
for j, aij := range row {
c[i][j] = aij + b[i][j] // % mod
}
}
return c
}
func (a matrix) sub(b matrix) matrix {
c := newMatrix(len(a), len(a[0]))
for i, row := range a {
for j, aij := range row {
c[i][j] = aij - b[i][j] // % mod) + mod) % mod
}
}
return c
}
func (a matrix) swapRows(i, j int) {
a[i], a[j] = a[j], a[i]
}
func (a matrix) swapCols(i, j int) {
for k := range a {
a[k][i], a[k][j] = a[k][j], a[k][i]
}
}
func (a matrix) mulRow(i int, k int64) {
for j := range a[i] {
a[i][j] *= k // % mod
}
}
func (a matrix) trace() (sum int64) {
for i, row := range a {
sum += row[i]
}
return
}
// NxN 矩阵求逆
// 模板题 https://www.luogu.com.cn/problem/P4783
func (matrix) inv(A matrix) matrix {
const mod int64 = 1e9 + 7
pow := func(x int64) (res int64) {
//x %= mod
res = 1
for n := mod - 2; n > 0; n >>= 1 {
if n&1 == 1 {
res = res * x % mod
}
x = x * x % mod
}
return
}
// 增广一个单位矩阵
n := len(A)
m := 2 * n
a := make(matrix, n)
for i := range a {
a[i] = make([]int64, m)
for j := range a {
a[i][j] = A[i][j] // or read
}
a[i][n+i] = 1
}
for i := range a {
for j := i; j < n; j++ {
if a[j][i] != 0 {
a[i], a[j] = a[j], a[i]
break
}
}
if a[i][i] == 0 {
// 矩阵不是满秩的
return nil
}
inv := pow(a[i][i])
for j := i; j < m; j++ {
a[i][j] = a[i][j] * inv % mod
}
for j := range a {
if j != i {
inv := a[j][i]
for k := i; k < m; k++ {
a[j][k] = (a[j][k] - inv*a[i][k]%mod + mod) % mod
}
}
}
}
// 结果保存在 a 右侧
res := make(matrix, n)
for i, row := range a {
res[i] = row[n:]
}
return res
}
// 高斯消元 Gaussian elimination O(n^3) 列主元消去法
// 求解 Ax=B,A 为方阵,返回解(无解或有无穷多组解)
// https://en.wikipedia.org/wiki/Gaussian_elimination
// https://en.wikipedia.org/wiki/Pivot_element#Partial_and_complete_pivoting
// https://oi-wiki.org/math/gauss/
// 总结 https://cloud.tencent.com/developer/article/1087352
// https://cp-algorithms.com/linear_algebra/determinant-gauss.html
// https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/GaussianElimination.java.html
// https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/GaussJordanElimination.java.html
// 模板题 https://www.luogu.com.cn/problem/P3389 https://www.luogu.com.cn/problem/P2455
// https://codeforces.com/problemset/problem/21/B
// 与 SCC 结合 https://www.luogu.com.cn/problem/P6030
func gaussJordanElimination(A matrix, B []int64) (sol []float64, infSol bool) {
const eps = 1e-8
n := len(A)
// 构造增广矩阵 (or read)
a := make([][]float64, n)
for i, row := range A {
a[i] = make([]float64, n+1)
for j, v := range row {
a[i][j] = float64(v)
}
a[i][n] = float64(B[i])
}
row := 0
for col := 0; col < n; col++ {
// 列主元消去法:减小误差,把正在处理的未知数系数的绝对值最大的式子换到第 row 行
pivot := row
for i := row; i < n; i++ {
if math.Abs(a[i][col]) > math.Abs(a[pivot][col]) {
pivot = i
}
}
// 这一列全为 0,表明无解或有无穷多解,具体是哪一种需要消元完成后才知道
if math.Abs(a[pivot][col]) < eps {
continue
}
a[row], a[pivot] = a[pivot], a[row]
// 初等行变换:把正在处理的未知数的系数变为 1
for j := col + 1; j <= n; j++ {
a[row][j] /= a[row][col]
}
// 消元,构造简化行梯阵式
for i := range a {
if i != row {
// 用当前行对其余行进行消元:从第 i 个式子中消去第 col 个未知数
for j := col + 1; j <= n; j++ {
a[i][j] -= a[i][col] * a[row][j]
}
}
}
row++
}
if row < n {
for _, r := range a[row:] {
if math.Abs(r[n]) > eps {
return nil, false
}
}
return nil, true
}
res := make([]float64, n)
for i, r := range a {
res[i] = r[n]
}
return res, false
}
// EXTRA: 求行列式(对结果模 mod)
// https://en.wikipedia.org/wiki/Determinant
// 参考 https://www.luogu.com.cn/blog/Stormy-Rey/calculate-det
func (a matrix) determinant(mod int64) int64 {
n := len(a)
res, sign := int64(1), 1
for i := range a {
for j := i + 1; j < n; j++ {
for a[i][i] != 0 {
div := a[j][i] / a[i][i]
for k := i; k < n; k++ {
a[j][k] = (a[j][k] - a[i][k]*div%mod + mod) % mod
}
a[i], a[j], sign = a[j], a[i], -sign
}
a[i], a[j], sign = a[j], a[i], -sign
}
}
for i, r := range a {
res = res * r[i] % mod
}
res = (res*int64(sign) + mod) % mod
return res
}
// 求矩阵的特征多项式
// todo https://www.cnblogs.com/ywwyww/p/8522541.html
// 线性基(子集异或和问题)
// https://oi.men.ci/linear-basis-notes/
// 模板题 https://www.luogu.com.cn/problem/P3812
// 构造 https://codeforces.com/problemset/problem/1427/E
// todo 题单 https://www.luogu.com.cn/training/11251
// todo https://codeforces.com/problemset/problem/895/C
// https://codeforces.com/problemset/problem/845/G
func xorBasis() {
const mx = 62
b := [mx + 1]int64{}
canZero := false
insert := func(x int64) {
for i := mx; i >= 0; i-- {
if x>>i&1 > 0 {
if b[i] == 0 {
b[i] = x
return
}
x ^= b[i]
}
}
canZero = true
}
decompose := func(x int64) bool {
for i := mx; i >= 0; i-- {
if x>>i&1 > 0 {
if b[i] == 0 {
return false
}
x ^= b[i]
}
}
return true
}
maxEle := func() (max int64) {
for i := mx; i >= 0; i-- {
if max^b[i] > max {
max ^= b[i]
}
}
return
}
minEle := func() int64 {
if canZero {
return 0
}
for i := 0; ; i++ {
if b[i] > 0 {
return b[i]
}
}
}
// http://acm.hdu.edu.cn/showproblem.php?pid=3949
kthEle := func(k int64) int64 {
// todo
return 0
}
_ = []interface{}{insert, decompose, minEle, maxEle, kthEle}
}
// 矩阵树定理 基尔霍夫定理 Kirchhoff‘s theorem
// https://oi-wiki.org/graph/matrix-tree/
// https://en.wikipedia.org/wiki/Kirchhoff%27s_theorem
// 线性规划(单纯形法) LP, linear programming (simplex method)
// https://en.wikipedia.org/wiki/Mathematical_optimization
// https://en.wikipedia.org/wiki/Linear_programming
// https://en.wikipedia.org/wiki/Integer_programming
// https://en.wikipedia.org/wiki/Simplex_algorithm
// todo https://oi-wiki.org/math/simplex/
// https://zhuanlan.zhihu.com/p/31644892
// https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/LinearProgramming.java.html
//
// todo https://uoj.ac/problem/179
// https://codeforces.com/problemset/problem/1430/G https://codeforces.com/blog/entry/83614?#comment-709868
// https://codeforces.com/problemset/problem/375/E