-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumbers.tex
145 lines (119 loc) · 3.75 KB
/
numbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\documentclass[twocolumn]{article}
\usepackage{amsmath}
\usepackage{amsthm}
\newtheorem{lemma}{Lemma}
\newtheorem{theorem}{Theorem}
\newcommand{\PrimeSet}{\mathbf{P}}
\title{Number Theory}
\author{Haldane Peterson}
\begin{document}
\maketitle
\section{Why are we here?}
For Dad!
And my own amusement.
\section{Unbounded Primes}
There is no bound on the number of primes.
To prove it, we start with a property of factoring that will be
useful:
\begin{lemma}
\label{lemma:next-composite}
If a composite number $c$ has a prime $p$ as a factor, i.e.,
\begin{equation}
c = a p
\label{eqn:cap}
\end{equation}
for some integer~$a$, then $c+1$ \emph{cannot} be a multiple of~$p$.
\end{lemma}
To prove Lemma~\ref{lemma:next-composite}, assume the opposite: that
\begin{equation}
c + 1 = b p
\label{eqn:c1bp}
\end{equation}
for some integer~$b$.
We can subtract equation~\ref{eqn:cap} from
equation~\ref{eqn:c1bp} to get:
\begin{eqnarray*}
(c + 1) - c & = & b p - a p \\
1 & = & p (b - a) \\
\end{eqnarray*}
So:
\begin{equation}
\label{eqn:b-a}
1 / p = b - a.
\end{equation}
By definition, $p > 1$, so:
\begin{equation*}
0 < 1 / p < 1
\end{equation*}
However, the difference $b-a$ is an integer, because~$b$ and~$a$ are
both integers.
The upshot is that
\begin{equation}
\label{eqn:b-a-neq}
1 / p \neq b - a.
\end{equation}
Equation~\ref{eqn:b-a-neq} directly contradicts
Equation~\ref{eqn:b-a},
therefore Equation~\ref{eqn:cap} and Equation~\ref{eqn:c1bp} cannot
both be true.
So, by contradiction, Lemma~\ref{lemma:next-composite} must be true.
\qed
Now for the main event:
The number of primes is infinite, or, equivalently:
\begin{theorem}
\label{theorem:unbounded-primes}
For any prime~$p$ there exists a larger prime~$p'$.
\end{theorem}
We prove this by contradiction.
Suppose, \textit{contra} Theorem~\ref{theorem:unbounded-primes}, that
there is a finite number of primes,~$n$.
Then the largest prime is $p_n$ and the set of all primes is:
\begin{equation*}
\PrimeSet = \{ p_1, p_2, \ldots, p_n \},
\end{equation*}
We can multiply all of the primes to construct a (very
large) composite number~$c$:
\begin{equation}
c = p_1 \cdot p_2 \cdot p_3 \cdots p_{n-1} \cdot p_n.
\end{equation}
Now consider $c+1$.
By Lemma~\ref{lemma:next-composite}, none of the prime factors of~$c$
can be a factor of~$c+1$.
So one of two cases must hold:
\begin{itemize}
\item $c+1$ is itself a prime.
Since $c+1$ is greater than any $p_i \in \PrimeSet$,
then
\begin{equation}
c+1 \notin \PrimeSet.
\end{equation}
That contradicts the assumption that~$\PrimeSet$ is exhaustive.
\item $c+1$ is composite.
But Lemma~\ref{lemma:next-composite} established that none of
the~$p_i$ are factors of $c+1$.
Therefore the prime factors of $c+1$, whatever they are, must not be
in~$\PrimeSet$.
Again, $\PrimeSet$~is not exhaustive, contradicting the assumption.
\end{itemize}
Therefore no finite~$\PrimeSet$ \emph{can} be exhaustive. The primes are
infinite. \qed
\subsection{History and Humor}
I adapted this section from memory and from a description on Proof
Wiki\footnote{proofwiki.org.} of Euclid's Theorem.
The theorem dates back to at least 300~BCE, as Proposition~20 in
\textit{Elements}, Book~IX.
I haven't yet tracked down an attribution for the proof. Is it from
Euclid or a later author? Time to find a copy of \textit{Elements}.
A student at a conference asks: ``Are all odd numbers prime?''
A mathematician answers, ``3, 5, and~7 are prime, but 9~is
not. So no.''
A physicist answers, ``Yes! 3~is prime, 5~is prime, 7~is prime, 9~is
experimental error, 11~is prime, etc.''
An engineer answers, ``Yes! 3~is prime, 5~is prime, 7~is prime, 9~is
prime, \ldots.''
%% \section{How Many Rationals?}
%% \section{Are All Real Numbers Rational?}
%% \section{How Many Real Numbers?}
\appendix
\section{Notations and Proofs}
\end{document}