-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathnanconv.m
114 lines (99 loc) · 4.54 KB
/
nanconv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function c = nanconv(a, k, varargin)
% NANCONV Convolution in 1D or 2D ignoring NaNs.
% C = NANCONV(A, K) convolves A and K, correcting for any NaN values
% in the input vector A. The result is the same size as A (as though you
% called 'conv' or 'conv2' with the 'same' shape).
%
% C = NANCONV(A, K, 'param1', 'param2', ...) specifies one or more of the following:
% 'edge' - Apply edge correction to the output.
% 'noedge' - Do not apply edge correction to the output (default).
% 'nanout' - The result C should have NaNs in the same places as A.
% 'nonanout' - The result C should have ignored NaNs removed (default).
% Even with this option, C will have NaN values where the
% number of consecutive NaNs is too large to ignore.
% '2d' - Treat the input vectors as 2D matrices (default).
% '1d' - Treat the input vectors as 1D vectors.
% This option only matters if 'a' or 'k' is a row vector,
% and the other is a column vector. Otherwise, this
% option has no effect.
%
% NANCONV works by running 'conv2' either two or three times. The first
% time is run on the original input signals A and K, except all the
% NaN values in A are replaced with zeros. The 'same' input argument is
% used so the output is the same size as A. The second convolution is
% done between a matrix the same size as A, except with zeros wherever
% there is a NaN value in A, and ones everywhere else. The output from
% the first convolution is normalized by the output from the second
% convolution. This corrects for missing (NaN) values in A, but it has
% the side effect of correcting for edge effects due to the assumption of
% zero padding during convolution. When the optional 'noedge' parameter
% is included, the convolution is run a third time, this time on a matrix
% of all ones the same size as A. The output from this third convolution
% is used to restore the edge effects. The 'noedge' parameter is enabled
% by default so that the output from 'nanconv' is identical to the output
% from 'conv2' when the input argument A has no NaN values.
%
% See also conv, conv2
%
% AUTHOR: Benjamin Kraus ([email protected], [email protected])
% Copyright (c) 2013, Benjamin Kraus
% $Id: nanconv.m 4861 2013-05-27 03:16:22Z bkraus $
% Process input arguments
for arg = 1:nargin-2
switch lower(varargin{arg})
case 'edge'; edge = true; % Apply edge correction
case 'noedge'; edge = false; % Do not apply edge correction
case {'same','full','valid'}; shape = varargin{arg}; % Specify shape
case 'nanout'; nanout = true; % Include original NaNs in the output.
case 'nonanout'; nanout = false; % Do not include NaNs in the output.
case {'2d','is2d'}; is1D = false; % Treat the input as 2D
case {'1d','is1d'}; is1D = true; % Treat the input as 1D
end
end
% Apply default options when necessary.
if(exist('edge','var')~=1); edge = false; end
if(exist('nanout','var')~=1); nanout = false; end
if(exist('is1D','var')~=1); is1D = false; end
if(exist('shape','var')~=1); shape = 'same';
elseif(~strcmp(shape,'same'))
error([mfilename ':NotImplemented'],'Shape ''%s'' not implemented',shape);
end
% Get the size of 'a' for use later.
sza = size(a);
% If 1D, then convert them both to columns.
% This modification only matters if 'a' or 'k' is a row vector, and the
% other is a column vector. Otherwise, this argument has no effect.
if(is1D);
if(~isvector(a) || ~isvector(k))
error('MATLAB:conv:AorBNotVector','A and B must be vectors.');
end
a = a(:); k = k(:);
end
% Flat function for comparison.
o = ones(size(a));
% Flat function with NaNs for comparison.
on = ones(size(a));
% Find all the NaNs in the input.
n = isnan(a);
% Replace NaNs with zero, both in 'a' and 'on'.
a(n) = 0;
on(n) = 0;
% Check that the filter does not have NaNs.
if(any(isnan(k)));
error([mfilename ':NaNinFilter'],'Filter (k) contains NaN values.');
end
% Calculate what a 'flat' function looks like after convolution.
if(any(n(:)) || edge)
flat = conv2(on,k,shape);
else flat = o;
end
% The line above will automatically include a correction for edge effects,
% so remove that correction if the user does not want it.
if(any(n(:)) && ~edge); flat = flat./conv2(o,k,shape); end
% Do the actual convolution
c = conv2(a,k,shape)./flat;
% If requested, replace output values with NaNs corresponding to input.
if(nanout); c(n) = NaN; end
% If 1D, convert back to the original shape.
if(is1D && sza(1) == 1); c = c.'; end
end