-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmcnemar.m
102 lines (98 loc) · 3.35 KB
/
mcnemar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [pval,chisquare]=mcnemar(varargin)
%MCNEMAR: Permorm McNemar's chi square on a 2x2 matrix
% In statistics, McNemar's test is a non-parametric method used on nominal
% data to determine whether the row and column marginal frequencies are
% equal. It is named after Q. McNemar, who introduced it in 1947. It is
% applied to 2x2 contingency tables with a dichotomous trait with matched
% pairs of subjects.
%
% Syntax: mcnemar(x,alpha)
%
% Inputs:
% X - 2x2 data matrix
% ALPHA (default 0.05)
% Outputs:
% - Chi Square critical value
% - Chi square value
% - p-value
% - Power
% Example:
% In the following example, a researcher attempts to determine if a drug
% has an effect on a particular disease.
%
% Drug
% + -
% --------------------
% + | 101 | 59 |
% Placebo |-------------------
% - | 121 | 33 |
% --------------------
%
%
% x=[101 59; 121 33];
%
% Calling on Matlab the function:
% mcnemar(x)
%
% Answer is:
%
% Critical value at 95% fiducial level = 3.8415
% McNemar chi-square (with Yates'es correction) = 20.672222 p = 0.000005
% alpha = 0.0500 Zb = 2.7566 Power (2-tails) = 0.0058
%
% Created by Giuseppe Cardillo
%
% To cite this file, this would be an appropriate format:
% Cardillo G. (2007) McNemar test: perform the McNemar test on a 2x2
% matrix.
% http://www.mathworks.com/matlabcentral/fileexchange/15472
%Input error handling
args=cell(varargin);
nu=numel(args);
if isempty(nu)
error('Warning: Matrix of data is missed...')
elseif nu>2
error('Warning: Max two input data are required')
end
default.values = {[],0.05};
default.values(1:nu) = args;
[x alpha] = deal(default.values{:});
%check if x is a 2x2 matrix
if ~isequal(size(x),[2 2])
error('Input matrix must be a 2x2 matrix')
end
if ~all(isfinite(x(:))) || ~all(isnumeric(x(:)))
error('Warning: all X values must be numeric and finite')
end
if ~isequal(x(:),round(x(:)))
error('Warning: X data matrix values must be whole numbers')
end
if nu==2 %if necessary check alpha
if ~isscalar(alpha) || ~isnumeric(alpha) || ~isfinite(alpha) || isempty(alpha)
error('Warning: it is required a numeric, finite and scalar ALPHA value.');
end
if alpha <= 0 || alpha >= 1 %check if alpha is between 0 and 1
error('Warning: ALPHA must be comprised between 0 and 1.')
end
end
clear args default nu
%observed subjects with only one reaction
ob=diag(fliplr(x));
%perform chi-square whith Yates'es correction and 1 degree of freedom
chisquare=(abs(diff(ob))-1)^2/sum(ob);
pval=1-chi2cdf(chisquare,1);
%Compute power
% Za=abs(-realsqrt(2)*erfcinv(alpha));
% N=sum(x(:));
% p=min(ob./N);
% pp=max(ob(1)/ob(2),ob(2)/ob(1));
% num=abs(realsqrt(N*p*(pp-1)^2)-realsqrt(Za^2*(pp+1)));
% denom=realsqrt(pp+1-p*(pp-1)^2);
% Zb=num/denom;
% pwr=(1-0.5*erfc(-Zb/realsqrt(2)))*2;
%
% %display results
% disp(['Critical value at ' num2str((1-alpha)*100) '% significance level = ' num2str(chi2inv(1-alpha,1))])
% fprintf('McNemar chi-square (with Yates'' correction) = %0.6f p = %0.6f\n',chisquare,1-chi2cdf(chisquare,1))
% fprintf('alpha = %0.4f Zb = %0.4f Power (2-tails) = %0.4f\n',alpha,Zb,pwr)