-
Notifications
You must be signed in to change notification settings - Fork 3
/
inference.py
137 lines (108 loc) · 4.81 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pyformat: disable
import json
import os
import re
import numpy as np
import objax
import tensorflow as tf # For data augmentation.
from absl import app
from absl import flags
from train import MemModule
from train import network
FLAGS = flags.FLAGS
def main(argv):
"""
Perform inference of the saved model in order to generate the
output logits, using a particular set of augmentations.
"""
del argv
tf.config.experimental.set_visible_devices([], "GPU")
def load(arch):
return MemModule(network(arch), nclass=100 if FLAGS.dataset == 'cifar100' else 10,
mnist=FLAGS.dataset == 'mnist',
arch=arch,
lr=.1,
batch=0,
epochs=0,
weight_decay=0)
def cache_load(arch):
thing = []
def fn():
if len(thing) == 0:
thing.append(load(arch))
return thing[0]
return fn
xs_all = np.load(os.path.join(FLAGS.logdir,"x_train.npy"))[:FLAGS.dataset_size]
ys_all = np.load(os.path.join(FLAGS.logdir,"y_train.npy"))[:FLAGS.dataset_size]
def get_loss(model, xbatch, ybatch, shift, reflect=True, stride=1):
outs = []
for aug in [xbatch, xbatch[:,:,::-1,:]][:reflect+1]:
aug_pad = tf.pad(aug, [[0] * 2, [shift] * 2, [shift] * 2, [0] * 2], mode='REFLECT').numpy()
for dx in range(0, 2*shift+1, stride):
for dy in range(0, 2*shift+1, stride):
this_x = aug_pad[:, dx:dx+32, dy:dy+32, :].transpose((0,3,1,2))
logits = model.model(this_x, training=True)
outs.append(logits)
print(np.array(outs).shape)
return np.array(outs).transpose((1, 0, 2))
N = 5000
def features(model, xbatch, ybatch):
return get_loss(model, xbatch, ybatch,
shift=0, reflect=True, stride=1)
for path in sorted(os.listdir(os.path.join(FLAGS.logdir))):
if re.search(FLAGS.regex, path) is None:
print("Skipping from regex")
continue
hparams = json.load(open(os.path.join(FLAGS.logdir, path, "hparams.json")))
arch = hparams['arch']
model = cache_load(arch)()
logdir = os.path.join(FLAGS.logdir, path)
checkpoint = objax.io.Checkpoint(logdir, keep_ckpts=10, makedir=True)
max_epoch, last_ckpt = checkpoint.restore(model.vars())
if max_epoch == 0: continue
if not os.path.exists(os.path.join(FLAGS.logdir, path, "logits")):
os.mkdir(os.path.join(FLAGS.logdir, path, "logits"))
if FLAGS.from_epoch is not None:
first = FLAGS.from_epoch
else:
first = max_epoch-1
for epoch in range(first,max_epoch+1):
if not os.path.exists(os.path.join(FLAGS.logdir, path, "ckpt", "%010d.npz"%epoch)):
# no checkpoint saved here
continue
if os.path.exists(os.path.join(FLAGS.logdir, path, "logits", "%010d.npy"%epoch)):
print("Skipping already generated file", epoch)
continue
try:
start_epoch, last_ckpt = checkpoint.restore(model.vars(), epoch)
except:
print("Fail to load", epoch)
continue
stats = []
for i in range(0,len(xs_all),N):
stats.extend(features(model, xs_all[i:i+N],
ys_all[i:i+N]))
# This will be shape N, augs, nclass
np.save(os.path.join(FLAGS.logdir, path, "logits", "%010d"%epoch),
np.array(stats)[:,None,:,:])
if __name__ == '__main__':
flags.DEFINE_string('dataset', 'cifar10', 'Dataset.')
flags.DEFINE_string('logdir', 'experiments/', 'Directory where to save checkpoints and tensorboard data.')
flags.DEFINE_string('regex', '.*experiment.*', 'keep files when matching')
flags.DEFINE_integer('dataset_size', 50000, 'size of dataset.')
flags.DEFINE_integer('from_epoch', None, 'which epoch to load from.')
app.run(main)