-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathold_vit.py
207 lines (171 loc) · 6.96 KB
/
old_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
class multiClassHingeLoss(nn.Module):
def __init__(self, p=2, margin=0.2, weight=None, size_average=True):
super(multiClassHingeLoss, self).__init__()
self.p=p
self.margin=margin
self.weight=weight#weight for each class, size=n_class, variable containing FloatTensor,cuda,reqiures_grad=False
self.size_average=size_average
def forward(self, output, y):
output_y=output[torch.arange(0,y.size()[0]).long().cuda(),y.data.cuda()].view(-1,1)#view for transpose
#margin - output[y] + output[i]
loss=output-output_y+self.margin#contains i=y
#remove i=y items
loss[torch.arange(0,y.size()[0]).long().cuda(),y.data.cuda()]=0
#max(0,_)
loss[loss<0]=0
#^p
if(self.p!=1):
loss=torch.pow(loss,self.p)
#add weight
if(self.weight is not None):
loss=loss*self.weight
#sum up
loss=torch.sum(loss)
if(self.size_average):
loss/=output.size()[0]#output.size()[0]
return loss
class Layer(nn.Linear):
def __init__(self, in_features, out_features,
bias=True, device=None, dtype=None):
super().__init__(in_features, out_features, bias, device, dtype)
self.opt = AdamW(self.parameters(), lr=linear_lr) #, lr=0.01
self.num_epochs = linear_epochs
self.loss_fn = multiClassHingeLoss()
self.bn = torch.nn.BatchNorm1d(out_features)
# self.ln = torch.nn.LayerNorm(500)
def forward(self, x):
x_direction = x / (x.norm(2, 1, keepdim=True) + 1e-4)
out = torch.matmul(x_direction, self.weight.T) + self.bias.unsqueeze(0)
return torch.relu(out)
def train(self, train_loader):
mem = []
lab = []
for i in (range(self.num_epochs)):
epoch_start = time.time()
batch_only_time = 0
for (inputs, labels) in train_loader:
batch_start = time.time()
inputs, labels = torch.squeeze(inputs.cuda(), dim=0), torch.squeeze(labels.cuda(), dim=0)
out = self.forward(inputs)
out = out.view(out.shape[0],-1)
m, hw = out.shape
if hw % 10 == 0:
out = out
else:
out = out[:, 0 : -(hw%10)]
out = out.view(m, 10, -1)
out = out.mean(dim = -1)
loss = torch.log(self.loss_fn(out.float(), labels.cuda()))
loss.backward(retain_graph=False)
self.opt.step()
self.opt.zero_grad()
inputs.cpu()
labels.cpu()
if i==self.num_epochs-1:
fwd = self.forward(inputs).detach()
mem.append(fwd)
lab.append(labels.detach())
batch_end = time.time()
batch_only_time += batch_end - batch_start
epoch_end = time.time()
# print(f"linear loss: {loss}")
# print("Epoch {} completed in {} seconds".format(i, epoch_end - epoch_start))
# print("Batch time: {}".format(batch_only_time))
buffer_loader = DataLoader(list(zip(mem, lab)), batch_size = 1)
del lab
del mem
torch.cuda.empty_cache()
return buffer_loader
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.Layer(dim, hidden_dim),
nn.GELU(),
nn.Layer(hidden_dim, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Layer(dim, dim * 3, bias=False)
self.to_out = nn.Layer(dim, dim)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, float('-inf'))
del mask
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
]))
def forward(self, x, mask=None):
for attn, ff in self.layers:
x = attn(x, mask=mask)
x = ff(x)
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels=3):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, num_classes)
)
def forward(self, img, mask=None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.transformer(x, mask)
x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)
if __name__ == '__main__':
torch.manual_seed(1234)