-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
34 lines (28 loc) · 1.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import shutil
import pandas as pd
from tqdm import tqdm
label_dir = "labels/val"
df = pd.DataFrame(columns=["image_id", "x", "y", "z"])
labels_l = os.listdir(label_dir)
for label in tqdm(labels_l):
with open(os.path.join(label_dir, label)) as f:
lines = f.readlines()
for line in lines:
line_split = line[:-1].split(",")
img_name = label[:-4] + "_" + line_split[0]
line_split_xyz = list(map(float, line_split[1:]))
df = df.append({"image_id": img_name, "x":line_split_xyz[0], "y":line_split_xyz[1], "z":line_split_xyz[2]}, ignore_index=True)
df.to_csv("labels_val.csv", index= False)
label_dir = "labels/train"
df = pd.DataFrame(columns=["image_id", "x", "y", "z"])
labels_l = os.listdir(label_dir)
for label in tqdm(labels_l):
with open(os.path.join(label_dir, label)) as f:
lines = f.readlines()
for line in lines:
line_split = line[:-1].split(",")
img_name = label[:-4] + "_" + line_split[0]
line_split_xyz = list(map(float, line_split[1:]))
df = df.append({"image_id": img_name, "x":line_split_xyz[0], "y":line_split_xyz[1], "z":line_split_xyz[2]}, ignore_index=True)
df.to_csv("labels_train.csv", index= False)