-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_conv.py
138 lines (119 loc) · 4.17 KB
/
inference_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
folder structure
images
train
val
test
0000
000.png
001.png
..
0049.png
0001
0002
..
6399
"""
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, models, transforms
import numpy as np
import torchvision
import cv2 as cv
import random
from munch import Munch
from PIL import Image
from tqdm import tqdm
import glob
import os
CONFIGS_DICT = {
"BATCH_SIZE": 32,
"TORCH_SEED": 42,
"NUMPY_SEED": 2020,
"TORCH_CUDA_SEED": 40,
"torch_backends_cudnn_deterministic" : True,
"torch_backends_cudnn_benchmark" : False,
"USE_GPU": torch.cuda.is_available(),
"CHK_PT_PATH": "./best_conv_wts.pth",
"IMAGES_PATH": "./images/",
# "SPLIT": "test",
}
configs = Munch(CONFIGS_DICT)
random.seed(configs.NUMPY_SEED)
np.random.seed(configs.NUMPY_SEED)
torch.manual_seed(configs.TORCH_SEED)
torch.cuda.manual_seed_all(configs.TORCH_CUDA_SEED)
torch.backends.cudnn.deterministic = configs.torch_backends_cudnn_deterministic
torch.backends.cudnn.benchmark = configs.torch_backends_cudnn_benchmark
# ResNet model (trained on Tesla P100)
model= torchvision.models.resnet18(False)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 3)
if configs.USE_GPU:
model.cuda()
model.eval()
if configs.USE_GPU:
loaded = torch.load(configs.CHK_PT_PATH)
else:
loaded = torch.load(configs.CHK_PT_PATH, map_location=torch.device('cpu'))
model.load_state_dict(loaded["best_model_wts"])
# images dataset
class EyeGazeTestDataset(Dataset):
def __init__(self, images_path, transform= None):
self.images_path = images_path
self.transform = transform
def __getitem__(self, idx):
img_path = self.images_path[idx]
img_path_split = img_path.split("/")
img_folder, image_name = img_path_split[-2], img_path_split[-1]
img = cv.imread(img_path)
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img = Image.fromarray(img)
if img.size != (320, 200):
img = img.resize((320, 200))
# ensures the size of image is 320, 200
assert img.size == (320, 200)
if self.transform is not None:
img = self.transform(img)
return img, img_folder, image_name
def __len__(self):
return len(self.images_path)
def run_split(split):
images_path = sorted(glob.glob(configs.IMAGES_PATH +f"{split}/**/*.png"))
all_seq =sorted(os.listdir(configs.IMAGES_PATH + f"{split}/"))
# print(all_seq)
test_dict_vector = {}
for i in all_seq:
test_dict_vector[i] = {}
composed_transform = transforms.Compose([
transforms.CenterCrop(size=(224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),])
testds = EyeGazeTestDataset(images_path, composed_transform)
testloader =torch.utils.data.DataLoader(testds, batch_size=configs.BATCH_SIZE)
test_size = len(testds)
print(f"Size of {split} dataset: ", test_size)
# ResNet predictions
for inputs, seq, name in tqdm(testloader):
if configs.USE_GPU:
inputs = inputs.cuda()
with torch.no_grad():
outputs = model(inputs)
outputs_norm = torch.norm(outputs, p= 2, dim= -1).view(configs.BATCH_SIZE, 1)
outputs = outputs/(outputs_norm + 1e-16)
if configs.USE_GPU:
outputs = outputs.detach().cpu().numpy()
else:
outputs = outputs.detach().numpy()
for ii in range(configs.BATCH_SIZE):
# print(seq[ii], name[ii], outputs[ii])
test_dict_vector[seq[ii]][name[ii]] = outputs[ii]
torch.save(test_dict_vector, f"{split}_vector.pth")
print(f"Saved the {split} images vector predictions from ResNet18 as {split}_vector.pth")
print("Extracting vectors for train set")
run_split("train")
print("Extracting vectors for val set")
run_split("val")
print("Extracting vectors for test set")
run_split("test")