-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
KFC: Kinship Verification with Fair Contrastive Loss and Multi-Task Learning #50
Comments
Estou atualmente na seção 4.2, que trata da função de perda. Um dos parágrafos ficou relativamente difícil de entender. Usei o app consensus dentro do ChatGPT para obter esclarecimentos. A resposta é bem fundamentada, onde há as citações dos trabalhos que fundamentaram os conceitos necessários ao meu entendimento. Um trecho: The concept of fairness-aware contrastive loss function in facial recognition, as described in your query, involves several technical aspects: larger gradients, similarity to margin penalty, balancing unfairness, and achieving consistent compactness across races. Mais detalhes no link anterior. |
Abstract
Introduction
Previous works on fairness in face recognition and face verification
ProposalObjective
Problem 1: fairness and small datasets
Problem 2: boost (kinship verification?) accuracy and fairness simultaneously
Problem 3: improve kinship verification accuracy
Problem 4: fairness (in general?)
Schematic
Contributions
Related WorkKinship Verification
Bias Mitigation
Related Work
Dataset Construction
Proposed Method
Model StructureCertain facial features used to determine kinship might be closely linked with racial characteristics. When these racial characteristics are deliberately obscured to avoid bias, the model may lose some of the information that was helping it accurately verify kinship. Loss Function
Questions
Gradients of Fair Contrastive Loss Function
Fairness Mechanism
ExperimentExperimental SettingDataset
Implementation Details
Ablation StudyEffects of improving accuracy
Effects of improving fairness
Questions
Comparison with SOTA methods
Visualization and Analysis on Fairness
Conclusion
General SummaryThe paper titled "KFC: Kinship Verification with Fair Contrastive Loss and Multi-Task Learning" by Jia Luo Peng, Keng Wei Chang, and Shang-Hong Lai, addresses the challenge of kinship verification in the presence of biases associated with gender, ethnicity, and age due to the lack of large-scale, diverse datasets. The authors propose a comprehensive solution involving a multi-task learning architecture with an attention module and introduce a fairness-aware contrastive loss function that incorporates a debiasing term with adversarial learning. The approach is evaluated on a newly constructed dataset named KinRace, designed to be robust against race-related biases. Insights
Further Questions to Research
This research presents pivotal advancements in kinship verification accuracy and racial fairness, paving the way for more inclusive and ethically conscious AI models in facial recognition technologies. |
Essa questão, bem como o conteúdo anterior, foi gerado pelo GPT4 usando as minhas anotações. É bem pertinente ao que já estamos fazendo. |
Esse paper foi bem complexo. Foram cerca de 12h estudando seu conteúdo e às vezes conceitos ou paper citados. Preciso ser mais eficiente nos demais. |
Em grande parte, esse trabalho foi uma combinação dos seguintes trabalhos abaixo
Penso que nossos próximos passos devem ser com essa questão em mente. Nesse sentido, que trabalhos existem que foquem na remoção de viéses de gênero e idade? #41 foi um; há também #34. |
Confirmo. O código deles foi adaptado do #26. Também citam explicitamente. |
Encontrei-o enquanto procurava código para #49.
The text was updated successfully, but these errors were encountered: