-
Notifications
You must be signed in to change notification settings - Fork 1
/
mlp.py
130 lines (99 loc) · 5.1 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Code from Chapter 4 of Machine Learning: An Algorithmic Perspective (2nd Edition)
# by Stephen Marsland (http://stephenmonika.net)
# You are free to use, change, or redistribute the code in any way you wish for
# non-commercial purposes, but please maintain the name of the original author.
# This code comes with no warranty of any kind.
# Stephen Marsland, 2008, 2014
import numpy as np
class mlp:
""" A Multi-Layer Perceptron"""
def __init__(self, input_dimensions, num_inputs, output_dimensions, nhidden, beta=1, momentum=0.9, outtype='logistic'):
""" Constructor """
# Set up network size
self.nin = input_dimensions
self.nout = output_dimensions
self.ndata = num_inputs
self.nhidden = nhidden
self.beta = beta
self.momentum = momentum
self.outtype = outtype
# Initialise network
self.weights1 = (np.random.rand(self.nin + 1, self.nhidden) - 0.5) * 2 / np.sqrt(self.nin)
self.weights2 = (np.random.rand(self.nhidden + 1, self.nout) - 0.5) * 2 / np.sqrt(self.nhidden)
def early_stop(self, train_inputs, train_targets, validation_set, validation_set_targets, eta):
""" initialise first error """
validation_set = np.concatenate((validation_set, -np.ones((np.shape(validation_set)[0], 1))), axis=1)
self.mlptrain(train_inputs, train_targets, eta, 100)
validation_out = self.mlpfwd(validation_set)
error1 = 0.5 * (np.sum(validation_out - validation_set_targets) ** 2)
""" initialise second error """
self.mlptrain(train_inputs, train_targets, eta, 100)
validation_out = self.mlpfwd(validation_set)
error2 = 0.5 * (np.sum(validation_out - validation_set_targets) ** 2)
while error2 < error1:
self.mlptrain(train_inputs, train_targets, eta, 100)
error1 = error2
validation_out = self.mlpfwd(validation_set)
error2 = 0.5 * (np.sum(validation_out - validation_set_targets) ** 2)
def mlptrain(self, inputs, targets, eta, niterations):
""" Train the thing """
# Add the inputs that match the bias node
inputs = np.concatenate((inputs, -np.ones((self.ndata, 1))), axis=1)
updatew1 = np.zeros((np.shape(self.weights1)))
updatew2 = np.zeros((np.shape(self.weights2)))
for n in range(niterations):
self.outputs = self.mlpfwd(inputs)
# Different types of output neurons
if self.outtype == 'linear':
deltao = (self.outputs - targets) / self.ndata
elif self.outtype == 'logistic':
deltao = self.beta * (self.outputs - targets) * self.outputs * (1.0 - self.outputs)
elif self.outtype == 'softmax':
deltao = (self.outputs - targets) * (self.outputs * (-self.outputs) + self.outputs) / self.ndata
else:
print("error")
deltah = self.hidden * self.beta * (1.0 - self.hidden) * (np.dot(deltao, np.transpose(self.weights2)))
updatew1 = eta * (np.dot(np.transpose(inputs), deltah[:, :-1])) + self.momentum * updatew1
updatew2 = eta * (np.dot(np.transpose(self.hidden), deltao)) + self.momentum * updatew2
self.weights1 -= updatew1
self.weights2 -= updatew2
# Randomise order of inputs (not necessary for matrix-based calculation)
# np.random.shuffle(change)
# inputs = inputs[change,:]
# targets = targets[change,:]
def mlpfwd(self, inputs):
""" Run the network forward """
self.hidden = np.dot(inputs, self.weights1)
self.hidden = 1.0 / (1.0 + np.exp(-self.beta * self.hidden))
self.hidden = np.concatenate((self.hidden, -np.ones((np.shape(inputs)[0], 1))), axis=1)
outputs = np.dot(self.hidden, self.weights2)
# Different types of output neurons
if self.outtype == 'linear':
return outputs
elif self.outtype == 'logistic':
return 1.0 / (1.0 + np.exp(-self.beta * outputs))
elif self.outtype == 'softmax':
normalisers = np.sum(np.exp(outputs), axis=1) * np.ones((1, np.shape(outputs)[0]))
return np.transpose(np.transpose(np.exp(outputs)) / normalisers)
else:
print("error")
def confmat(self, inputs, targets):
"""Confusion matrix"""
# Add the inputs that match the bias node
inputs = np.concatenate((inputs, -np.ones((np.shape(inputs)[0], 1))), axis=1)
outputs = self.mlpfwd(inputs)
nclasses = np.shape(targets)[1]
if nclasses == 1:
nclasses = 2
outputs = np.where(outputs > 0.5, 1, 0)
else:
# 1-of-N encoding
outputs = np.argmax(outputs, 1)
targets = np.argmax(targets, 1)
cm = np.zeros((nclasses, nclasses))
for i in range(nclasses):
for j in range(nclasses):
cm[i, j] = np.sum(np.where(outputs == j, 1, 0) * np.where(targets == i, 1, 0))
print("Confusion matrix is:")
print(cm)
print("Percentage Correct: ", np.trace(cm) / np.sum(cm) * 100)