-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmetrics.py
357 lines (331 loc) · 13.3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import logging
import os
from datetime import datetime, timedelta, timezone
from dotenv import load_dotenv
from prometheus_client.core import REGISTRY, GaugeMetricFamily
from prometheus_client.registry import Collector
from prometheus_client.twisted import MetricsResource
from pymongo import MongoClient
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site
load_dotenv()
# Set up logging
loglevel = os.getenv("LOGGING_LEVEL", "info").upper()
logformat = os.getenv("LOGGING_FORMAT", "%(asctime)s - %(levelname)s - %(message)s")
logging.basicConfig(format=logformat, level=loglevel)
logger = logging.getLogger(__name__)
logger.debug("Set log level to %s", logging.getLevelName(logger.getEffectiveLevel()))
class LibreChatMetricsCollector(Collector):
"""
A custom Prometheus collector that gathers metrics from the LibreChat MongoDB database.
"""
def __init__(self, mongodb_uri):
"""
Initialize the MongoDB client and set up initial state.
"""
self.client = MongoClient(mongodb_uri)
self.db = self.client[os.getenv("MONGODB_DATABASE", "LibreChat")]
self.messages_collection = self.db["messages"]
def collect(self):
"""
Collect metrics and yield Prometheus metrics.
"""
yield from self.collect_message_count()
yield from self.collect_error_message_count()
yield from self.collect_input_token_count()
yield from self.collect_output_token_count()
yield from self.collect_conversation_count()
yield from self.collect_message_count_per_model()
yield from self.collect_error_count_per_model()
yield from self.collect_input_token_count_per_model()
yield from self.collect_output_token_count_per_model()
yield from self.collect_active_user_count()
yield from self.collect_active_conversation_count()
yield from self.collect_uploaded_file_count()
yield from self.collect_registerd_user_count()
def collect_message_count(self):
"""
Collect number of sent messages stored in the database.
"""
try:
total_messages = self.messages_collection.estimated_document_count()
logger.debug("Messages count: %s", total_messages)
yield GaugeMetricFamily(
"librechat_messages",
"Number of sent messages stored in the database",
value=total_messages,
)
except Exception as e:
logger.exception("Error collecting message count: %s", e)
def collect_error_message_count(self):
"""
Collect number of error messages in the database.
"""
try:
total_errors = self.messages_collection.count_documents({"error": True})
logger.debug("Error message count: %s", total_errors)
yield GaugeMetricFamily(
"librechat_error_messages",
"Number of error messages stored in the database",
value=total_errors,
)
except Exception as e:
logger.exception("Error collecting error message count: %s", e)
def collect_input_token_count(self):
"""
Collect total number of input tokens processed.
"""
try:
pipeline = [
{
"$match": {
"sender": "User",
"tokenCount": {"$exists": True, "$ne": None},
}
},
{"$group": {"_id": None, "totalInputTokens": {"$sum": "$tokenCount"}}},
]
results = list(self.messages_collection.aggregate(pipeline))
total_input_tokens = results[0]["totalInputTokens"] if results else 0
logger.debug("Total input tokens: %s", total_input_tokens)
yield GaugeMetricFamily(
"librechat_input_tokens",
"Number of input tokens processed",
value=total_input_tokens,
)
except Exception as e:
logger.exception("Error collecting total input tokens: %s", e)
def collect_output_token_count(self):
"""
Collect total number of output tokens generated.
"""
try:
pipeline = [
{
"$match": {
"sender": {"$ne": "User"},
"tokenCount": {"$exists": True, "$ne": None},
}
},
{"$group": {"_id": None, "totalOutputTokens": {"$sum": "$tokenCount"}}},
]
results = list(self.messages_collection.aggregate(pipeline))
total_output_tokens = results[0]["totalOutputTokens"] if results else 0
logger.debug("Total output tokens: %s", total_output_tokens)
yield GaugeMetricFamily(
"librechat_output_tokens",
"Total number of output tokens generated",
value=total_output_tokens,
)
except Exception as e:
logger.exception("Error collecting total output tokens: %s", e)
def collect_conversation_count(self):
"""
Collect number of started conversations stored in the database.
"""
try:
total_conversations = self.db["conversations"].estimated_document_count()
logger.debug("Total conversations: %s", total_conversations)
yield GaugeMetricFamily(
"librechat_conversations",
"Number of started conversations stored in the database",
value=total_conversations,
)
except Exception as e:
logger.exception("Error collecting conversation count: %s", e)
def collect_message_count_per_model(self):
"""
Collect number of messages per model.
"""
try:
pipeline = [
{"$match": {"sender": {"$ne": "User"}}},
{"$group": {"_id": "$model", "messageCount": {"$sum": 1}}},
]
results = self.messages_collection.aggregate(pipeline)
metric = GaugeMetricFamily(
"librechat_messages_per_model",
"Number of messages per model",
labels=["model"],
)
for result in results:
model = result["_id"] or "unknown"
count = result["messageCount"]
metric.add_metric([model], count)
logger.debug("Number of message count for model %s: %s", model, count)
yield metric
except Exception as e:
logger.exception("Error collecting messages count per model: %s", e)
def collect_error_count_per_model(self):
"""
Collect number of error messages per model.
"""
try:
pipeline = [
{"$match": {"error": True}},
{"$group": {"_id": "$model", "errorCount": {"$sum": 1}}},
]
results = self.messages_collection.aggregate(pipeline)
metric = GaugeMetricFamily(
"librechat_errors_per_model",
"Number of error messages per model",
labels=["model"],
)
for result in results:
model = result["_id"] or "unknown"
error_count = result["errorCount"]
metric.add_metric([model], error_count)
logger.debug(
"Number of error messages for model %s: %s", model, error_count
)
yield metric
except Exception as e:
logger.exception("Error collecting error messages per model: %s", e)
def collect_input_token_count_per_model(self):
"""
Collect number of input tokens per model.
"""
try:
pipeline = [
{
"$match": {
"sender": "User",
"tokenCount": {"$exists": True, "$ne": None},
"model": {"$exists": True, "$ne": None},
}
},
{
"$group": {
"_id": "$model",
"totalInputTokens": {"$sum": "$tokenCount"},
}
},
]
results = self.messages_collection.aggregate(pipeline)
metric = GaugeMetricFamily(
"librechat_input_tokens_per_model",
"Number of input tokens per model",
labels=["model"],
)
for result in results:
model = result["_id"] or "unknown"
tokens = result["totalInputTokens"]
metric.add_metric([model], tokens)
logger.debug("Input tokens for model %s: %s", model, tokens)
yield metric
except Exception as e:
logger.exception("Error collecting number of input tokens per model", e)
def collect_output_token_count_per_model(self):
"""
Collect number of output tokens per model.
"""
try:
pipeline = [
{
"$match": {
"sender": {"$ne": "User"},
"tokenCount": {"$exists": True, "$ne": None},
"model": {"$exists": True, "$ne": None},
}
},
{
"$group": {
"_id": "$model",
"totalOutputTokens": {"$sum": "$tokenCount"},
}
},
]
results = self.messages_collection.aggregate(pipeline)
metric = GaugeMetricFamily(
"librechat_output_tokens_per_model",
"Number of output tokens per model",
labels=["model"],
)
for result in results:
model = result["_id"] or "unknown"
tokens = result["totalOutputTokens"]
metric.add_metric([model], tokens)
logger.debug("Output tokens for model %s: %s", model, tokens)
yield metric
except Exception as e:
logger.exception("Error collecting number of output tokens per model", e)
def collect_active_user_count(self):
"""
Collect number of users active within last 5 minutes.
"""
try:
five_minutes_ago = datetime.now(timezone.utc) - timedelta(minutes=5)
active_users = len(
self.messages_collection.distinct(
"user", {"createdAt": {"$gte": five_minutes_ago}}
)
)
logger.debug("Number of active users: %s", active_users)
yield GaugeMetricFamily(
"librechat_active_users",
"Number of active users",
value=active_users,
)
except Exception as e:
logger.exception("Error collecting number of active users: %s", e)
def collect_active_conversation_count(self):
"""
Collect number of conversations active within last 5 minutes.
"""
try:
five_minutes_ago = datetime.now(timezone.utc) - timedelta(minutes=5)
active_conversations = len(
self.messages_collection.distinct(
"conversationId", {"createdAt": {"$gte": five_minutes_ago}}
)
)
logger.debug("Number of active conversations: %s", active_conversations)
yield GaugeMetricFamily(
"librechat_active_conversations",
"Number of active conversations",
value=active_conversations,
)
except Exception as e:
logger.exception("Error collecting number of active conversations: %s", e)
def collect_registerd_user_count(self):
"""
Collect number of registered users.
"""
try:
user_count = self.db["users"].estimated_document_count()
logger.debug("Number of registered users: %s", user_count)
yield GaugeMetricFamily(
"librechat_registered_users",
"Number of registered users",
value=user_count,
)
except Exception as e:
logger.exception("Error collecting number of registered users: %s", e)
def collect_uploaded_file_count(self):
"""
Collect number of uploaded files.
"""
try:
file_count = self.db["files"].estimated_document_count()
yield GaugeMetricFamily(
"librechat_uploaded_files",
"Number of uploaded files",
value=file_count,
)
except Exception as e:
logger.exception("Error collecting uploaded files: %s", e)
if __name__ == "__main__":
# Get MongoDB URI and Prometheus port from environment variables
mongodb_uri = os.getenv("MONGODB_URI", "mongodb://mongodb:27017/")
port = 8000
# Start the Prometheus exporter
collector = LibreChatMetricsCollector(mongodb_uri)
REGISTRY.register(collector)
logger.info("Starting server on port %i", port)
root = Resource()
metrics = MetricsResource()
root.putChild(b"", metrics)
root.putChild(b"metrics", metrics)
reactor.listenTCP(port, Site(root))
reactor.run()