-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Intel LA57 Support #6
Comments
@Champ-Goblem Thanks for report, we are adding the support of it. We will report the progresses here as possible as we can. |
For a 4-level paging mode PVM guest, only the top 128TB is canonical. When KASLR is enabled for 5-level page tables, this range overlaps with the KASLR entropy range. Therefore, set the end address to -128TB to reserve a range for the PVM guest. Regarding the KASAN area, the size is sufficient. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
…ld SP role The 'role.host_mmu_la57_top_p4d' bit is only allowed for L4 SP and should not be inherited when calculating the child SP role. Otherwise, wrong spte will be set in drop_parent_pte() and it will result in a broken SPT. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
When 5-level paging mode is enabled on the host, the guest can be either in 4-level paging mode or 5-level paging mode. For 4-level paging mode, only the topmost 128TB is canonical. Therefore, the hypervisor needs to reserve two ranges: one in the vmalloc area for the 5-level paging mode guest, and another in the topmost 128TB for the 4-level paging mode guest. If the allocation of the range for the 5-level paging mode guest fails, then 5-level paging mode is disabled for the guest. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
…l paging mode According to the PVM specification, a flag in the PVM_HC_LOAD_PGTBL hypercall is allowed to directly change the paging mode. Therefore, add the missing flags when the guest is in 5-level paging mode. This preparation is done to support 5-level paging mode guests. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
Similar to the 4-level paging mode guest, the 5-level paging mode guest should lie within the allowed range provided by the hypervisor. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
The 5-level paging mode is enabled in compressed kernel booting and it uses the CPUID instruction to detect 5-level paging support. For PVM guest, pvm_cpuid() should be used instead of the CPUID instruction, so detect PVM hypervisor support early in configure_5level_paging(). Additionally, relocation for PVM guest during booting should be avoided. This is because there is only the first 4G identity mapping, and if physical address randomization is enabled, a #PF exception will occur if the chosen output address is over the first 4G range. Therefore, for simplification, physical address randomization should be avoided. As for virtual address randomization, it should occur after entering the kernel entry. Signed-off-by: Hou Wenlong <[email protected]> Link: #6
Hi @Champ-Goblem , We have provided basic support for 5-level paging mode hosts and 5-level paging mode guests. I have tested booting 4-level paging mode guests and 5-level paging mode guests on a 5-level paging mode host, but it's not fully tested, as we don't have CI/CD now. Please note that migrating a 4-level paging mode guest from a 5-level paging mode host to 4-level paging mode host is currently not successful. If any problems occur, please feel free to report them. Thanks! |
…te_call_indirect kprobe_emulate_call_indirect currently uses int3_emulate_call to emulate indirect calls. However, int3_emulate_call always assumes the size of the call to be 5 bytes when calculating the return address. This is incorrect for register-based indirect calls in x86, which can be either 2 or 3 bytes depending on whether REX prefix is used. At kprobe runtime, the incorrect return address causes control flow to land onto the wrong place after return -- possibly not a valid instruction boundary. This can lead to a panic like the following: [ 7.308204][ C1] BUG: unable to handle page fault for address: 000000000002b4d8 [ 7.308883][ C1] #PF: supervisor read access in kernel mode [ 7.309168][ C1] #PF: error_code(0x0000) - not-present page [ 7.309461][ C1] PGD 0 P4D 0 [ 7.309652][ C1] Oops: 0000 [#1] SMP [ 7.309929][ C1] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.7.0-rc5-trace-for-next virt-pvm#6 [ 7.310397][ C1] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014 [ 7.311068][ C1] RIP: 0010:__common_interrupt+0x52/0xc0 [ 7.311349][ C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3 [ 7.312512][ C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046 [ 7.312899][ C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001 [ 7.313334][ C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4 [ 7.313702][ C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482 [ 7.314146][ C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023 [ 7.314509][ C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000 [ 7.314951][ C1] FS: 0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000 [ 7.315396][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7.315691][ C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0 [ 7.316153][ C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 7.316508][ C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 7.316948][ C1] Call Trace: [ 7.317123][ C1] <IRQ> [ 7.317279][ C1] ? __die_body+0x64/0xb0 [ 7.317482][ C1] ? page_fault_oops+0x248/0x370 [ 7.317712][ C1] ? __wake_up+0x96/0xb0 [ 7.317964][ C1] ? exc_page_fault+0x62/0x130 [ 7.318211][ C1] ? asm_exc_page_fault+0x22/0x30 [ 7.318444][ C1] ? __cfi_native_send_call_func_single_ipi+0x10/0x10 [ 7.318860][ C1] ? default_idle+0xb/0x10 [ 7.319063][ C1] ? __common_interrupt+0x52/0xc0 [ 7.319330][ C1] common_interrupt+0x78/0x90 [ 7.319546][ C1] </IRQ> [ 7.319679][ C1] <TASK> [ 7.319854][ C1] asm_common_interrupt+0x22/0x40 [ 7.320082][ C1] RIP: 0010:default_idle+0xb/0x10 [ 7.320309][ C1] Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 66 90 0f 00 2d 09 b9 3b 00 fb f4 <fa> c3 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 e9 [ 7.321449][ C1] RSP: 0018:ffffc9000009bee8 EFLAGS: 00000256 [ 7.321808][ C1] RAX: ffff88813bca8b68 RBX: 0000000000000001 RCX: 000000000001ef0c [ 7.322227][ C1] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 000000000001ef0c [ 7.322656][ C1] RBP: ffffc9000009bef8 R08: 8000000000000000 R09: 00000000000008c2 [ 7.323083][ C1] R10: 0000000000000000 R11: ffffffff81058e70 R12: 0000000000000000 [ 7.323530][ C1] R13: ffff8881002b30c0 R14: 0000000000000000 R15: 0000000000000000 [ 7.323948][ C1] ? __cfi_lapic_next_deadline+0x10/0x10 [ 7.324239][ C1] default_idle_call+0x31/0x50 [ 7.324464][ C1] do_idle+0xd3/0x240 [ 7.324690][ C1] cpu_startup_entry+0x25/0x30 [ 7.324983][ C1] start_secondary+0xb4/0xc0 [ 7.325217][ C1] secondary_startup_64_no_verify+0x179/0x17b [ 7.325498][ C1] </TASK> [ 7.325641][ C1] Modules linked in: [ 7.325906][ C1] CR2: 000000000002b4d8 [ 7.326104][ C1] ---[ end trace 0000000000000000 ]--- [ 7.326354][ C1] RIP: 0010:__common_interrupt+0x52/0xc0 [ 7.326614][ C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3 [ 7.327570][ C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046 [ 7.327910][ C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001 [ 7.328273][ C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4 [ 7.328632][ C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482 [ 7.329223][ C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023 [ 7.329780][ C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000 [ 7.330193][ C1] FS: 0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000 [ 7.330632][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7.331050][ C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0 [ 7.331454][ C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 7.331854][ C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 7.332236][ C1] Kernel panic - not syncing: Fatal exception in interrupt [ 7.332730][ C1] Kernel Offset: disabled [ 7.333044][ C1] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]--- The relevant assembly code is (from objdump, faulting address highlighted): ffffffff8102ed9d: 41 ff d3 call *%r11 ffffffff8102eda0: 65 48 <8b> 05 30 c7 ff mov %gs:0x7effc730(%rip),%rax The emulation incorrectly sets the return address to be ffffffff8102ed9d + 0x5 = ffffffff8102eda2, which is the 8b byte in the middle of the next mov. This in turn causes incorrect subsequent instruction decoding and eventually triggers the page fault above. Instead of invoking int3_emulate_call, perform push and jmp emulation directly in kprobe_emulate_call_indirect. At this point we can obtain the instruction size from p->ainsn.size so that we can calculate the correct return address. Link: https://lore.kernel.org/all/[email protected]/ Fixes: 6256e66 ("x86/kprobes: Use int3 instead of debug trap for single-step") Cc: [email protected] Signed-off-by: Jinghao Jia <[email protected]> Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
We are attempting to test out PVM on GCP through their newer machine types (N4/C3) however when trying to load the PVM kernel module we see the following error in the kernel logs:
We managed to avoid this error by disabling 5-level paging support when compiling the kernel (
CONFIG_X86_5LEVEL=n
), however, it would be good to know if support for this will be added at some point, and ideally to have this as a way to track that support.Thanks
The text was updated successfully, but these errors were encountered: