forked from HiKapok/tf.fashionAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swa_train_cpn.py
533 lines (459 loc) · 28.4 KB
/
swa_train_cpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright 2018 Changan Wang
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
#from scipy.misc import imread, imsave, imshow, imresize
import tensorflow as tf
from net import detnet_cpn
from net import detxt_cpn
from net import seresnet_cpn
from net import cpn
import swa_moving_average
from utility import train_helper
from utility import mertric
from preprocessing import preprocessing
from preprocessing import dataset
import config
# hardware related configuration
tf.app.flags.DEFINE_integer(
'num_readers', 16,#16
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 48,#48
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer(
'num_cpu_threads', 0,
'The number of cpu cores used to train.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', '../Datasets/tfrecords',#'/media/rs/0E06CD1706CD0127/Kapok/Chi/Datasets/tfrecords',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'dataset_name', '{}_????', 'The pattern of the dataset name to load.')
tf.app.flags.DEFINE_string(
'model_dir', './',
'The parent directory where the model will be stored.')
tf.app.flags.DEFINE_string(
'backbone', 'detnet50_cpn',
'The backbone network to use for feature extraction.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer(
'save_summary_steps', 100,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_checkpoints_secs', 3600,
'The frequency with which the model is saved, in seconds.')
# model related configuration
tf.app.flags.DEFINE_integer(
'train_image_size', 384,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'heatmap_size', 96,
'The size of the output heatmap of the model.')
tf.app.flags.DEFINE_float(
'heatmap_sigma', 1.,
'The sigma of Gaussian which generate the target heatmap.')
tf.app.flags.DEFINE_float(
'bbox_border', 25.,
'The nearest distance of the crop border to al keypoints.')
tf.app.flags.DEFINE_integer(
'train_epochs', 10,
'The number of epochs to use for training.')
tf.app.flags.DEFINE_integer(
'batch_size', 10,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_boolean(
'use_ohkm', True,
'Wether we will use the ohkm for hard keypoints.')
tf.app.flags.DEFINE_string(
'data_format', 'channels_first', # 'channels_first' or 'channels_last'
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
# optimizer related configuration
tf.app.flags.DEFINE_integer(
'tf_random_seed', 20180417, 'Random seed for TensorFlow initializers.')
tf.app.flags.DEFINE_float(
'weight_decay', 1e-5, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'mse_weight', 1., 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('high_learning_rate', 8e-5, 'The maximal learning rate used by SWA.')#1e-3
tf.app.flags.DEFINE_float(
'low_learning_rate', 1e-6,
'The minimal learning rate used by SWA.')
tf.app.flags.DEFINE_boolean(
'dummy_train', False,
'training with zero learning rate to get batch norm statistics.')
# tf.app.flags.DEFINE_string(
# 'steps_per_epoch', '1125, 905, 935, 1114, 1040',
# 'Learning rate decay boundaries by global_step (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
#'blouse', 'dress', 'outwear', 'skirt', 'trousers', 'all'
'model_scope', None,
'Model scope name used to replace the name_scope in checkpoint.')
tf.app.flags.DEFINE_boolean(
'run_on_cloud', True,
'Wether we will train on cloud.')
tf.app.flags.DEFINE_string(
'model_to_train', 'blouse, dress, outwear, skirt, trousers', #'all, blouse, dress, outwear, skirt, trousers', 'skirt, dress, outwear, trousers',
'The sub-model to train (comma-separated list).')
FLAGS = tf.app.flags.FLAGS
all_models = {
'resnet50_cpn': {'backbone': cpn.cascaded_pyramid_net, 'logs_sub_dir': 'swa_logs_cpn', 'checkpoint_root': 'logs_cpn'},
'detnet50_cpn': {'backbone': detnet_cpn.cascaded_pyramid_net, 'logs_sub_dir': 'swa_logs_detnet_cpn', 'checkpoint_root': 'logs_detnet_cpn'},
'seresnet50_cpn': {'backbone': seresnet_cpn.cascaded_pyramid_net, 'logs_sub_dir': 'swa_logs_se_cpn', 'checkpoint_root': 'logs_se_cpn'},
'seresnext50_cpn': {'backbone': seresnet_cpn.xt_cascaded_pyramid_net, 'logs_sub_dir': 'swa_logs_sext_cpn', 'checkpoint_root': 'logs_sext_cpn'},
'detnext50_cpn': {'backbone': detxt_cpn.cascaded_pyramid_net, 'logs_sub_dir': 'swa_logs_detxt_cpn', 'checkpoint_root': 'logs_detxt_cpn'},
}
#--model_scope=blouse --checkpoint_path=./logs/all --data_format=channels_last --batch_size=1
def input_pipeline(is_training=True, model_scope=FLAGS.model_scope, num_epochs=FLAGS.train_epochs):
if 'all' in model_scope:
lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64),
tf.constant(config.global_norm_lvalues, dtype=tf.int64)), 0)
rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64),
tf.constant(config.global_norm_rvalues, dtype=tf.int64)), 1)
else:
lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
tf.constant(config.local_norm_lvalues, dtype=tf.int64)), 0)
rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
tf.constant(config.local_norm_rvalues, dtype=tf.int64)), 1)
preprocessing_fn = lambda org_image, classid, shape, key_x, key_y, key_v: preprocessing.preprocess_image(org_image, classid, shape, FLAGS.train_image_size, FLAGS.train_image_size, key_x, key_y, key_v, (lnorm_table, rnorm_table), is_training=is_training, data_format=('NCHW' if FLAGS.data_format=='channels_first' else 'NHWC'), category=(model_scope if 'all' not in model_scope else '*'), bbox_border=FLAGS.bbox_border, heatmap_sigma=FLAGS.heatmap_sigma, heatmap_size=FLAGS.heatmap_size)
images, shape, classid, targets, key_v, isvalid, norm_value = dataset.slim_get_split(FLAGS.data_dir, preprocessing_fn, FLAGS.batch_size, FLAGS.num_readers, FLAGS.num_preprocessing_threads, num_epochs=num_epochs, is_training=is_training, file_pattern=FLAGS.dataset_name, category=(model_scope if 'all' not in model_scope else '*'), reader=None)
return images, {'targets': targets, 'key_v': key_v, 'shape': shape, 'classid': classid, 'isvalid': isvalid, 'norm_value': norm_value}
if config.PRED_DEBUG:
from scipy.misc import imread, imsave, imshow, imresize
def save_image_with_heatmap(image, height, width, heatmap_size, targets, pred_heatmap, indR, indG, indB):
if not hasattr(save_image_with_heatmap, "counter"):
save_image_with_heatmap.counter = 0 # it doesn't exist yet, so initialize it
save_image_with_heatmap.counter += 1
img_to_save = np.array(image.tolist()) + 128
#print(img_to_save.shape)
img_to_save = img_to_save.astype(np.uint8)
heatmap0 = np.sum(targets[indR, ...], axis=0).astype(np.uint8)
heatmap1 = np.sum(targets[indG, ...], axis=0).astype(np.uint8)
heatmap2 = np.sum(targets[indB, ...], axis=0).astype(np.uint8) if len(indB) > 0 else np.zeros((heatmap_size, heatmap_size), dtype=np.float32)
img_to_save = imresize(img_to_save, (height, width), interp='lanczos')
heatmap0 = imresize(heatmap0, (height, width), interp='lanczos')
heatmap1 = imresize(heatmap1, (height, width), interp='lanczos')
heatmap2 = imresize(heatmap2, (height, width), interp='lanczos')
img_to_save = img_to_save/2
img_to_save[:,:,0] = np.clip((img_to_save[:,:,0] + heatmap0 + heatmap2), 0, 255)
img_to_save[:,:,1] = np.clip((img_to_save[:,:,1] + heatmap1 + heatmap2), 0, 255)
#img_to_save[:,:,2] = np.clip((img_to_save[:,:,2]/4. + heatmap2), 0, 255)
file_name = 'targets_{}.jpg'.format(save_image_with_heatmap.counter)
imsave(os.path.join(config.DEBUG_DIR, file_name), img_to_save.astype(np.uint8))
pred_heatmap = np.array(pred_heatmap.tolist())
#print(pred_heatmap.shape)
for ind in range(pred_heatmap.shape[0]):
img = pred_heatmap[ind]
img = img - img.min()
img *= 255.0/img.max()
file_name = 'heatmap_{}_{}.jpg'.format(save_image_with_heatmap.counter, ind)
imsave(os.path.join(config.DEBUG_DIR, file_name), img.astype(np.uint8))
return save_image_with_heatmap.counter
def get_keypoint(image, targets, predictions, heatmap_size, height, width, category, clip_at_zero=True, data_format='channels_last', name=None):
predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size])
pred_max = tf.reduce_max(predictions, axis=-1)
pred_indices = tf.argmax(predictions, axis=-1)
pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32)
width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32)
pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32)
if clip_at_zero:
pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32)
pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.)
pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.)
if config.PRED_DEBUG:
pred_indices_ = tf.squeeze(pred_indices)
image_ = tf.squeeze(image) * 255.
pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32)
pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size])
if data_format == 'channels_first':
image_ = tf.transpose(image_, perm=(1, 2, 0))
save_image_op = tf.py_func(save_image_with_heatmap,
[image_, height, width,
heatmap_size,
tf.reshape(pred_heatmap * 255., [-1, heatmap_size, heatmap_size]),
tf.reshape(predictions, [-1, heatmap_size, heatmap_size]),
config.left_right_group_map[category][0],
config.left_right_group_map[category][1],
config.left_right_group_map[category][2]],
tf.int64, stateful=True)
with tf.control_dependencies([save_image_op]):
pred_x, pred_y = pred_x * 1., pred_y * 1.
return pred_x, pred_y
def gaussian_blur(inputs, inputs_filters, sigma, data_format, name=None):
with tf.name_scope(name, "gaussian_blur", [inputs]):
data_format_ = 'NHWC' if data_format=='channels_last' else 'NCHW'
if data_format_ == 'NHWC':
inputs = tf.transpose(inputs, [0, 2, 3, 1])
ksize = int(6 * sigma + 1.)
x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1)
y = tf.transpose(x, [1, 0])
kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2))
#print(kernel_matrix)
kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1])
kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1])
#kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3])
outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur')
if data_format_ == 'NHWC':
outputs = tf.transpose(outputs, [0, 3, 1, 2])
return outputs
backbone_ = all_models[FLAGS.backbone.strip()]['backbone']
def keypoint_model_fn(features, labels, mode, params):
targets = labels['targets']
shape = labels['shape']
classid = labels['classid']
key_v = labels['key_v']
isvalid = labels['isvalid']
norm_value = labels['norm_value']
cur_batch_size = tf.shape(features)[0]
#features= tf.ones_like(features)
with tf.variable_scope(params['model_scope'], default_name=None, values=[features], reuse=tf.AUTO_REUSE):
pred_outputs = backbone_(features, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], params['heatmap_size'], (mode == tf.estimator.ModeKeys.TRAIN), params['data_format'])
#print(pred_outputs)
if params['data_format'] == 'channels_last':
pred_outputs = [tf.transpose(pred_outputs[ind], [0, 3, 1, 2], name='outputs_trans_{}'.format(ind)) for ind in list(range(len(pred_outputs)))]
score_map = pred_outputs[-1]
pred_x, pred_y = get_keypoint(features, targets, score_map, params['heatmap_size'], params['train_image_size'], params['train_image_size'], (params['model_scope'] if 'all' not in params['model_scope'] else '*'), clip_at_zero=True, data_format=params['data_format'])
# this is important!!!
targets = 255. * targets
blur_list = [1., 1.37, 1.73, 2.4, None]#[1., 1.5, 2., 3., None]
#blur_list = [None, None, None, None, None]
targets_list = []
for sigma in blur_list:
if sigma is None:
targets_list.append(targets)
else:
# always channels first foe targets
targets_list.append(gaussian_blur(targets, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], sigma, params['data_format'], 'blur_{}'.format(sigma)))
#with tf.control_dependencies([pred_x, pred_y]):
ne_mertric = mertric.normalized_error(targets, score_map, norm_value, key_v, isvalid,
cur_batch_size,
config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')],
params['heatmap_size'],
params['train_image_size'])
# last_pred_mse = tf.metrics.mean_squared_error(score_map, targets,
# weights=1.0 / tf.cast(cur_batch_size, tf.float32),
# name='last_pred_mse')
# filter all invisible keypoint maybe better for this task
# all_visible = tf.logical_and(key_v>0, isvalid>0)
# targets_list = [tf.boolean_mask(targets_list[ind], all_visible) for ind in list(range(len(targets_list)))]
# pred_outputs = [tf.boolean_mask(pred_outputs[ind], all_visible, name='boolean_mask_{}'.format(ind)) for ind in list(range(len(pred_outputs)))]
all_visible = tf.expand_dims(tf.expand_dims(tf.cast(tf.logical_and(key_v>0, isvalid>0), tf.float32), axis=-1), axis=-1)
targets_list = [targets_list[ind] * all_visible for ind in list(range(len(targets_list)))]
pred_outputs = [pred_outputs[ind] * all_visible for ind in list(range(len(pred_outputs)))]
sq_diff = tf.reduce_sum(tf.squared_difference(targets, pred_outputs[-1]), axis=-1)
last_pred_mse = tf.metrics.mean_absolute_error(sq_diff, tf.zeros_like(sq_diff), name='last_pred_mse')
metrics = {'normalized_error': ne_mertric, 'last_pred_mse':last_pred_mse}
predictions = {'normalized_error': ne_mertric[1]}
ne_mertric = tf.identity(ne_mertric[1], name='ne_mertric')
mse_loss_list = []
if params['use_ohkm']:
for pred_ind in list(range(len(pred_outputs) - 1)):
mse_loss_list.append(0.5 * tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind],
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(pred_ind),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))# SUM, SUM_OVER_BATCH_SIZE, default mean by all elements
temp_loss = tf.reduce_mean(tf.reshape(tf.losses.mean_squared_error(targets_list[-1], pred_outputs[-1], weights=1.0, loss_collection=None, reduction=tf.losses.Reduction.NONE), [cur_batch_size, config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')], -1]), axis=-1)
num_topk = config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')] // 2
gather_col = tf.nn.top_k(temp_loss, k=num_topk, sorted=True)[1]
gather_row = tf.reshape(tf.tile(tf.reshape(tf.range(cur_batch_size), [-1, 1]), [1, num_topk]), [-1, 1])
gather_indcies = tf.stop_gradient(tf.stack([gather_row, tf.reshape(gather_col, [-1, 1])], axis=-1))
select_targets = tf.gather_nd(targets_list[-1], gather_indcies)
select_heatmap = tf.gather_nd(pred_outputs[-1], gather_indcies)
mse_loss_list.append(tf.losses.mean_squared_error(select_targets, select_heatmap,
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(len(pred_outputs) - 1),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))
else:
for pred_ind in list(range(len(pred_outputs))):
mse_loss_list.append(tf.losses.mean_squared_error(targets_list[pred_ind], pred_outputs[pred_ind],
weights=1.0 / tf.cast(cur_batch_size, tf.float32),
scope='loss_{}'.format(pred_ind),
loss_collection=None,#tf.GraphKeys.LOSSES,
# mean all elements of all pixels in all batch
reduction=tf.losses.Reduction.MEAN))# SUM, SUM_OVER_BATCH_SIZE, default mean by all elements
mse_loss = tf.multiply(params['mse_weight'], tf.add_n(mse_loss_list), name='mse_loss')
tf.summary.scalar('mse', mse_loss)
tf.losses.add_loss(mse_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = mse_loss + params['weight_decay'] * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
tf.summary.scalar('loss', total_loss)
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, predictions=predictions, eval_metric_ops=metrics)
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
if not params['dummy_train']:
step_remainder = tf.floormod(global_step - 1, params['steps_per_epoch'])
range_scale = tf.to_float(step_remainder + 1) / tf.to_float(params['steps_per_epoch'])
learning_rate = tf.add((1 - range_scale) * params['high_learning_rate'], range_scale * params['low_learning_rate'], name='learning_rate')
tf.summary.scalar('lr', learning_rate)
should_update = tf.equal(step_remainder, params['steps_per_epoch'] - 2)
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
opt_op = optimizer.minimize(loss, global_step)
variables_to_train = []
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
variables_to_train.append(var)
# Create an ExponentialMovingAverage object
ema = swa_moving_average.SWAMovingAverage(tf.floordiv(global_step, params['steps_per_epoch']))
with tf.control_dependencies([opt_op]):
train_op = tf.cond(should_update, lambda : ema.apply(variables_to_train), lambda : tf.no_op())
_init_fn = train_helper.get_raw_init_fn_for_scaffold(params['checkpoint_path'], params['model_dir'])
else:
learning_rate = tf.constant(0., name='learning_rate')
tf.summary.scalar('lr', learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.)
variables_to_train = []
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
variables_to_train.append(var)
ema = swa_moving_average.SWAMovingAverage(tf.floordiv(global_step, params['steps_per_epoch']))
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
_init_fn = train_helper.swa_get_init_fn_for_scaffold(params['checkpoint_path'], params['model_dir'], variables_to_train, ema)
else:
train_op = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics,
scaffold=tf.train.Scaffold(init_fn=_init_fn, saver=None))
def parse_comma_list(args):
return [float(s.strip()) for s in args.split(',')]
def sub_loop(model_fn, model_scope, model_dir, run_config, train_epochs, high_learning_rate, low_learning_rate, checkpoint_path=None):
steps_per_epoch = config.split_size[(model_scope if 'all' not in model_scope else '*')]['train'] // FLAGS.batch_size
fashionAI = tf.estimator.Estimator(
model_fn=model_fn, model_dir=model_dir, config=run_config,
params={
'checkpoint_path': checkpoint_path,
'model_dir': model_dir,
'model_scope': model_scope,
'train_image_size': FLAGS.train_image_size,
'heatmap_size': FLAGS.heatmap_size,
'data_format': FLAGS.data_format,
'steps_per_epoch': steps_per_epoch,
'use_ohkm': FLAGS.use_ohkm,
'batch_size': FLAGS.batch_size,
'weight_decay': FLAGS.weight_decay,
'mse_weight': FLAGS.mse_weight,
'momentum': FLAGS.momentum,
'dummy_train': FLAGS.dummy_train,
'high_learning_rate': high_learning_rate,
'low_learning_rate': low_learning_rate,
})
tf.gfile.MakeDirs(model_dir)
tf.logging.info('Starting to train model {}.'.format(model_scope))
tensors_to_log = {
'lr': 'learning_rate',
'loss': 'total_loss',
'mse': 'mse_loss',
'ne': 'ne_mertric',
}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps, formatter=lambda dicts: '{}:'.format(model_scope) + (', '.join(['%s=%.6f' % (k, v) for k, v in dicts.items()])))
tf.logging.info('Starting a training cycle.')
fashionAI.train(input_fn=lambda : input_pipeline(True, model_scope, train_epochs), hooks=[logging_hook], max_steps=(steps_per_epoch*((train_epochs+1) if FLAGS.dummy_train else train_epochs)))
tf.logging.info('Finished model {}.'.format(model_scope))
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
sess_config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(
save_checkpoints_secs=FLAGS.save_checkpoints_secs).replace(
save_checkpoints_steps=None).replace(
save_summary_steps=FLAGS.save_summary_steps).replace(
keep_checkpoint_max=5).replace(
tf_random_seed=FLAGS.tf_random_seed).replace(
log_step_count_steps=FLAGS.log_every_n_steps).replace(
session_config=sess_config)
full_model_dir = os.path.join(FLAGS.model_dir, all_models[FLAGS.backbone.strip()]['logs_sub_dir'])
checkpoint_model_dir = os.path.join(FLAGS.model_dir, all_models[FLAGS.backbone.strip()]['checkpoint_root'])
detail_params = {
'blouse': {
'model_dir' : os.path.join(full_model_dir, 'blouse'),
'train_epochs': FLAGS.train_epochs,
'model_scope': 'blouse',
'high_learning_rate': FLAGS.high_learning_rate,
'low_learning_rate': FLAGS.low_learning_rate,
'checkpoint_path': os.path.join(checkpoint_model_dir, 'blouse'),
},
'dress': {
'model_dir' : os.path.join(full_model_dir, 'dress'),
'train_epochs': FLAGS.train_epochs,
'model_scope': 'dress',
'high_learning_rate': FLAGS.high_learning_rate,
'low_learning_rate': FLAGS.low_learning_rate,
'checkpoint_path': os.path.join(checkpoint_model_dir, 'dress'),
},
'outwear': {
'model_dir' : os.path.join(full_model_dir, 'outwear'),
'train_epochs': FLAGS.train_epochs,
'model_scope': 'outwear',
'high_learning_rate': FLAGS.high_learning_rate,
'low_learning_rate': FLAGS.low_learning_rate,
'checkpoint_path': os.path.join(checkpoint_model_dir, 'outwear'),
},
'skirt': {
'model_dir' : os.path.join(full_model_dir, 'skirt'),
'train_epochs': FLAGS.train_epochs,
'model_scope': 'skirt',
'high_learning_rate': FLAGS.high_learning_rate,
'low_learning_rate': FLAGS.low_learning_rate,
'checkpoint_path': os.path.join(checkpoint_model_dir, 'skirt'),
},
'trousers': {
'model_dir' : os.path.join(full_model_dir, 'trousers'),
'train_epochs': FLAGS.train_epochs,
'high_learning_rate': FLAGS.high_learning_rate,
'low_learning_rate': FLAGS.low_learning_rate,
'model_scope': 'trousers',
'checkpoint_path': os.path.join(checkpoint_model_dir, 'trousers'),
},
}
model_to_train = [s.strip() for s in FLAGS.model_to_train.split(',')]
# import datetime
# import time
# while True:
# time.sleep(1600)
# if '8' in datetime.datetime.now().time().strftime('%H'):
# break
for m in model_to_train:
sub_loop(keypoint_model_fn, m, detail_params[m]['model_dir'], run_config, detail_params[m]['train_epochs'], detail_params[m]['high_learning_rate'], detail_params[m]['low_learning_rate'], detail_params[m]['checkpoint_path'])
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()