-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathresults_itrPCRNet.py
370 lines (305 loc) · 15.8 KB
/
results_itrPCRNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import argparse
import math
import h5py
import numpy as np
from numpy import matlib as npm
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import tf_util
import helper
import transforms3d.euler as t3d
import transforms3d
import time
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
# Implementation parameters
parser.add_argument('-log', '--log_dir', default='results_itrPCRNet', help='Store the results. test_network_log_data : network: itr/siamese/icp, log: multi_catg/airplane_multi_models, data: test_data1/unseen_data1')
parser.add_argument('-weights', '--model_path', type=str, default='log_itrPCRNet/best_model.ckpt', help='Path of the weights (.ckpt file) to be used for test')
parser.add_argument('-noise', '--use_noise_data', required=True, type=bool, default=False, help='Use Noisy Data for Source')
parser.add_argument('--iterations', type=int, default=5, help='No of Iterations for pose estimation')
parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 32]')
parser.add_argument('--filename', type=str, default='test', help='Name of files')
# Data parameters
parser.add_argument('--template_idx', type=int, default=0, help='Index of template to be used for evaluation of network')
parser.add_argument('--data_dict', type=str, default='train_data',help='Data used to train templates or multi_model_templates')
parser.add_argument('--eval_poses', type=str, default='itr_net_test_data45.csv', help='Poses for evaluation')
parser.add_argument('--threshold', type=float, default=1e-07, help='threshold for convergence criteria')
# Useful and default parameters.
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='ipcr_model', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--decay_step', type=int, default=400000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
parser.add_argument('--centroid_sub', type=bool, default=True, help='Centroid Subtraction from Source and Template before Pose Prediction.')
FLAGS = parser.parse_args()
# Parameters for data
NUM_POINT = FLAGS.num_point
MAX_NUM_POINT = 2048
NUM_CLASSES = 40
centroid_subtraction_switch = FLAGS.centroid_sub
BATCH_SIZE = FLAGS.batch_size
# Network hyperparameters
MAX_LOOPS = FLAGS.iterations
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
# Calculate Learning Rate during training.
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
# Get Batch Normalization decay.
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def find_errors(gt_pose, final_pose):
# Simple euler distand between translation part.
gt_position = gt_pose[0:3]
predicted_position = final_pose[0:3]
translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position)))
# Convert euler angles rotation matrix.
gt_euler = gt_pose[3:6]
pt_euler = final_pose[3:6]
gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx')
pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx')
# Multiply inverse of one rotation matrix with another rotation matrix.
error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat))
_,angle = transforms3d.axangles.mat2axangle(error_mat) # Convert matrix to axis angle representation and that angle is error.
return translation_error, abs(angle*(180/np.pi))
def check_convergence(previous_pose, predicted_pose):
prevT, predT, identityT = np.zeros((4,4)), np.zeros((4,4)), np.zeros((4,4))
prevT[3,3], predT[3,3] = 1, 1
identityT[0,0], identityT[1,1], identityT[2,2], identityT[3,3] = 1,1,1,1
prevT[0:3,3] = previous_pose[0:3]
predT[0:3,3] = predicted_pose[0:3]
prevT[0:3,0:3] = t3d.quat2mat([previous_pose[3],previous_pose[4],previous_pose[5],previous_pose[6]])
predT[0:3,0:3] = t3d.quat2mat([predicted_pose[3],predicted_pose[4],predicted_pose[5],predicted_pose[6]])
errorT = np.dot(predT, np.linalg.inv(prevT))
errorT = errorT - identityT
errorT = errorT*errorT
error = np.sum(errorT)
converged = False
if error < FLAGS.threshold:
converged = True
return converged
def check_convergenceT(previous_T, predicted_T):
identityT = np.zeros((4,4))
identityT[0,0], identityT[1,1], identityT[2,2], identityT[3,3] = 1,1,1,1
errorT = np.dot(predicted_T, np.linalg.inv(previous_T))
errorT = errorT - identityT
errorT = errorT*errorT
error = np.sum(errorT)
converged = False
if error < FLAGS.threshold:
converged = True
return converged
def train():
with tf.Graph().as_default():
with tf.device('/cpu:0'):
batch = tf.Variable(0) # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
with tf.device('/gpu:'+str(GPU_INDEX)):
is_training_pl = tf.placeholder(tf.bool, shape=()) # Flag for dropouts.
bn_decay = get_bn_decay(batch) # Calculate BN decay.
learning_rate = get_learning_rate(batch) # Calculate Learning Rate at each step.
# Define a network to backpropagate the using final pose prediction.
with tf.variable_scope('Network') as _:
# Get the placeholders.
source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
# Extract Features.
source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=bn_decay)
# Find the predicted transformation.
predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=bn_decay)
# Find the loss using source and transformed template point cloud.
# loss = MODEL.get_loss(predicted_transformation, BATCH_SIZE, template_pointclouds_pl, source_pointclouds_pl)
loss = 0
with tf.device('/cpu:0'):
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
saver.restore(sess, FLAGS.model_path)
# Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
ops = {'source_pointclouds_pl': source_pointclouds_pl,
'template_pointclouds_pl': template_pointclouds_pl,
'is_training_pl': is_training_pl,
'predicted_transformation': predicted_transformation,
'loss': loss,
'step': batch}
templates = helper.loadData(FLAGS.data_dict)
eval_poses = helper.read_poses(FLAGS.data_dict, FLAGS.eval_poses) # Read all the poses data for evaluation.
eval_network(sess, ops, templates, eval_poses)
def eval_network(sess, ops, templates, poses):
# Arguments:
# sess: Tensorflow session to handle tensors.
# ops: Dictionary for tensors of Network
# templates: Training Point Cloud data.
# poses: Training pose data.
is_training = False
display_ptClouds = False
display_poses = False
display_poses_in_itr = False
display_ptClouds_in_itr = False
loss_sum = 0 # Total Loss in each batch.
num_batches = int(poses.shape[0]/BATCH_SIZE) # Number of batches in an epoch.
print('Number of batches to be executed: {}'.format(num_batches))
# Store time taken, no of iterations, translation error and rotation error for registration.
TIME, ITR, Trans_Err, Rot_Err = [], [], [], []
idxs_5_5, idxs_10_1, idxs_20_2 = [], [], []
if FLAGS.use_noise_data:
print(FLAGS.data_dict)
templates, sources = helper.read_noise_data(FLAGS.data_dict)
print(templates.shape, sources.shape)
for fn in range(num_batches):
start_idx = fn*BATCH_SIZE # Start index of poses.
end_idx = (fn+1)*BATCH_SIZE # End index of poses.
if FLAGS.use_noise_data:
template_data = np.copy(templates[fn,:,:]).reshape(1,-1,3) # As template_data is changing.
source_data = np.copy(sources[fn,:,:]).reshape(1,-1,3)
batch_euler_poses = poses[start_idx:end_idx] # Extract poses for batch training.
else:
template_data = np.copy(templates[fn,:,:]).reshape(1,-1,3) # As template_data is changing.
batch_euler_poses = poses[start_idx:end_idx] # Extract poses for batch training.
source_data = helper.apply_transformation(template_data, batch_euler_poses) # Apply the poses on the templates to get source data.
template_data = template_data[:,0:NUM_POINT,:]
source_data = source_data[:,0:NUM_POINT,:]
# Just to visualize the data.
TEMPLATE_DATA = np.copy(template_data) # Store the initial template to visualize results.
SOURCE_DATA = np.copy(source_data) # Store the initial source to visualize results.
# Subtract the Centroids from the Point Clouds.
if centroid_subtraction_switch:
source_data = source_data - np.mean(source_data, axis=1, keepdims=True)
template_data = template_data - np.mean(template_data, axis=1, keepdims=True)
# To visualize the source and point clouds:
if display_ptClouds:
helper.display_clouds_data(source_data[0])
helper.display_clouds_data(template_data[0])
TRANSFORMATIONS = np.identity(4) # Initialize identity transformation matrix.
TRANSFORMATIONS = npm.repmat(TRANSFORMATIONS,BATCH_SIZE,1).reshape(BATCH_SIZE,4,4) # Intialize identity matrices of size equal to batch_size
# previous_pose = np.array([0,0,0,1,0,0,0])
previous_T = np.eye(4)
start = time.time() # Log start time.
# Iterations for pose refinement.
for loop_idx in range(MAX_LOOPS):
for network_itr in range(7):
# Feed the placeholders of Network19 with template data and source data.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
predicted_transformation = sess.run([ops['predicted_transformation']], feed_dict=feed_dict) # Ask the network to predict the pose.
# Apply the transformation on the source data and multiply it to transformation matrix obtained in previous iteration.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
# Display Results after each iteration.
if display_poses_in_itr:
print(predicted_transformation[0,0:3])
print(predicted_transformation[0,3:7]*(180/np.pi))
if display_ptClouds_in_itr:
helper.display_clouds_data(template_data[0])
# Feed the placeholders of Network_L with source data and template data obtained from N-Iterations.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
# Ask the network to predict transformation, calculate loss using distance between actual points.
predicted_transformation = sess.run([ops['predicted_transformation']], feed_dict=feed_dict)
# Apply the final transformation on the source data and multiply it with the transformation matrix obtained from N-Iterations.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
if check_convergenceT(previous_T, TRANSFORMATIONS[0]):
break
else:
previous_T = np.copy(TRANSFORMATIONS[0])
end = time.time() # Log end time.
final_pose = helper.find_final_pose_inv(TRANSFORMATIONS) # Find the final pose (translation, orientation (euler angles in degrees)) from transformation matrix.
final_pose[0,0:3] = final_pose[0,0:3] + np.mean(SOURCE_DATA, axis=1)[0]
translation_error, rotational_error = find_errors(batch_euler_poses[0], final_pose[0])
TIME.append(end-start)
ITR.append(loop_idx+1)
Trans_Err.append(translation_error)
Rot_Err.append(rotational_error)
if rotational_error<20 and translation_error<0.2:
if rotational_error<10 and translation_error<0.1:
if rotational_error<5 and translation_error<0.05:
idxs_5_5.append(fn)
idxs_10_1.append(fn)
idxs_20_2.append(fn)
# Display the ground truth pose and predicted pose for first Point Cloud in batch
if display_poses:
print('Ground Truth Position: {}'.format(batch_euler_poses[0,0:3].tolist()))
print('Predicted Position: {}'.format(final_pose[0,0:3].tolist()))
print('Ground Truth Orientation: {}'.format((batch_euler_poses[0,3:6]*(180/np.pi)).tolist()))
print('Predicted Orientation: {}'.format((final_pose[0,3:6]*(180/np.pi)).tolist()))
# Display Loss Value.
# helper.display_three_clouds(TEMPLATE_DATA[0],SOURCE_DATA[0],template_data[0],"")
print("Batch: {} & time: {}, iteration: {}".format(fn, end-start, loop_idx+1))
log = {'TIME': TIME, 'ITR':ITR, 'Trans_Err': Trans_Err, 'Rot_Err': Rot_Err, 'idxs_5_5': idxs_5_5, 'idxs_10_1': idxs_10_1, 'idxs_20_2': idxs_20_2, 'num_batches': num_batches}
helper.log_test_results(FLAGS.log_dir, FLAGS.filename, log)
def store_params(FLAGS):
with open(os.path.join(FLAGS.log_dir,'params.txt'),'w') as file:
file.write('Model:\t\t\t\t\t\t{}\n'.format(FLAGS.model))
file.write('Model Path:\t\t\t\t\t{}\n'.format(FLAGS.model_path))
file.write('Data Dict:\t\t\t\t\t{}\n'.format(FLAGS.data_dict))
file.write('Log Dir:\t\t\t\t\t{}\n'.format(FLAGS.log_dir))
file.write('Evaluation Pose:\t\t\t{}\n'.format(FLAGS.eval_poses))
file.write('Max Allowed Iterations:\t\t{}\n'.format(FLAGS.iterations))
file.write('Threshold for convergence:\t{}\n'.format(FLAGS.threshold))
return True
def set_params(model, data_dict, model_path, log_dir, eval_poses):
set_p = False
if not set_p:
if not os.path.exists(log_dir): os.mkdir(log_dir)
FLAGS.model = model
FLAGS.data_dict = data_dict
FLAGS.model_path = model_path
FLAGS.log_dir = log_dir
FLAGS.eval_poses = eval_poses
set_p = store_params(FLAGS)
return set_p
if __name__=='__main__':
if set_params(FLAGS.model, FLAGS.data_dict, FLAGS.model_path, FLAGS.log_dir, FLAGS.eval_poses):
MODEL = importlib.import_module(FLAGS.model) # import network module
helper.download_data(FLAGS.data_dict)
train()
# Used the following code to test multiple datas and multiple logs.
# model_paths2test = ['log_multi_catg/model250.ckpt']#,['log_multi_catg_noise/model300.ckpt']
# # model_paths2test = ['log_car_multi_models/model200.ckpt']#, 'log_car_multi_models_noise/model350.ckpt']
# data_dicts2test = ['train_data','unseen_data']#, 'car_data']#, 'unseen_data']
# eval_poses2test = ['itr_net_test_data45.csv']
# FLAGS.use_noise_data = False
# for mpt in model_paths2test:
# for ddt in data_dicts2test:
# for ept in eval_poses2test:
# log_dir = 'test_itr_'+str(mpt[4:len(mpt)-14])+'_'+str(ddt)+'_'+str(ept[len(ept)-6:len(ept)-4])
# if set_params(FLAGS.model, ddt, mpt, log_dir, ept):
# MODEL = importlib.import_module(FLAGS.model)
# train()