-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
292 lines (260 loc) · 13.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from typing import Optional
import torch
import os
from samplers.uni_pc import UniPC
from samplers.heun import Heun
from samplers.dpm_solverpp import DPM_SolverPP
from samplers.dpm_solver import DPM_Solver
from samplers.euler import Euler
from samplers.ipndm import iPNDM
from noise_schedulers import NoiseScheduleVE
import pickle
import argparse
import time
import yaml
import random
import numpy as np
import ast
PRIOR_TIMESTEPS = {
"dpm_solver++": {
3: [14.6146, 1.5286, 0.4936, 0.0292],
4: [14.6146, 3.1131, 1.0421, 0.3811, 0.0292],
5: [14.6146, 4.3900, 1.4467, 0.6114, 0.2255, 0.0292],
6: [14.6146, 4.3900, 1.8073, 0.8319, 0.3811, 0.1258, 0.0292],
7: [14.6146, 4.39, 2.0267, 1.0421, 0.5712, 0.3058, 0.1258, 0.0292],
8: [14.6146, 5.9489, 2.9183, 1.5286, 0.8811, 0.4936, 0.2667, 0.1258, 0.0292],
9: [14.6146, 6.4477, 3.1131, 1.7083, 1.0421, 0.6526, 0.4183, 0.2667, 0.1258, 0.0292],
10: [14.6146, 7.6188, 4.0861, 2.4211, 1.4467, 0.9324, 0.6114, 0.3811, 0.2255, 0.1258, 0.0292],
11: [14.6146, 7.0019, 3.8092, 2.2797, 1.5286, 1.0421, 0.7391, 0.4936, 0.3437, 0.2255, 0.1258, 0.0292]
},
"ipndm": {
3: [14.6146, 1.7083, 0.532, 0.0292],
4: [14.6146, 3.1131, 1.0421, 0.3811, 0.0292],
5: [14.6146, 4.39, 1.5286, 0.6526, 0.2667, 0.0292],
6: [14.6146, 4.7242, 1.9132, 0.9324, 0.4557, 0.1801, 0.0292],
7: [14.6146, 6.4477, 2.2797, 1.1629, 0.6114, 0.3058, 0.1258, 0.0292],
8: [14.6146, 6.4477, 2.7391, 1.4467, 0.8319, 0.4936, 0.2667, 0.1258, 0.0292],
9: [14.6146, 6.4477, 3.3251, 1.9132, 1.1629, 0.7391, 0.4557, 0.2667, 0.1258, 0.0292],
10: [14.6146, 5.9489, 3.3251, 2.0267, 1.2969, 0.8319, 0.5712, 0.3811, 0.2255, 0.1258, 0.0292],
11: [14.6146, 6.4477, 3.8092, 2.2797, 1.5286, 1.0421, 0.7391, 0.4936, 0.3437, 0.2255, 0.1258, 0.0292]
}
}
def parse_prior_timesteps(args):
if args.gits_ts is not None:
try:
args.gits_ts = ast.literal_eval(args.gits_ts)
return
except:
pass
if args.use_gits and args.solver_name in PRIOR_TIMESTEPS and args.steps in PRIOR_TIMESTEPS[args.solver_name]:
args.gits_ts = PRIOR_TIMESTEPS[args.solver_name][args.steps]
def set_seed_everything(seed):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_arguments():
parser = argparse.ArgumentParser(description="Description of your program")
parser.add_argument('--all_config')
parser.add_argument('--model', help="edm/latent_diff")
model_group = parser.add_argument_group('Model Parameters')
model_group.add_argument("--ckp_path", type=str, help="Path to the checkpoint file.")
model_group.add_argument("--solver_name", type=str, help="Method for solving: heun/dpm_solver++/uni_pc.")
model_group.add_argument("--unipc_variant", type=str, choices=["bh1", "bh2"], help="Variant of UniPC: bh1/bh2.")
model_group.add_argument("--steps", type=int, help="Number of sampling steps.")
model_group.add_argument("--order", type=int, help="Order for sampling.")
model_group.add_argument("--time_mode", type=str, help="Time model: time or lambda.")
training_group = parser.add_argument_group('Training Parameters')
training_group.add_argument("--seed", type=int, help="seed")
training_group.add_argument("--use_ema", action="store_true", help="If we use ema for LSUN latent diff")
training_group.add_argument("--log_path", type=str, help="Folder name for storing evaluation results.")
training_group.add_argument("--old_log_path", type=str, help="Folder name for storing old evaluation results.")
training_group.add_argument("--data_dir", type=str, help="Path to data dir.")
training_group.add_argument("--num_train", type=int, help="Number of training sample.")
training_group.add_argument("--num_valid", type=int, help="Number of validation sample.")
training_group.add_argument("--main_train_batch_size", type=int, help="Batch size for training.")
training_group.add_argument("--main_valid_batch_size", type=int, help="Batch size for validation.")
training_group.add_argument("--win_rate", type=float, help="Win rate, should be in (0, 0.5]")
training_group.add_argument("--prior_bound", type=float, help="Prior bound.")
training_group.add_argument("--fix_bound", action="store_true", help="fix bound or not")
training_group.add_argument("--loss_type", type=str, choices=["L1", "L2", "LPIPS"], help="Type of loss: L1, L2 or LPIPS.")
training_group.add_argument("--training_rounds_v1", type=int, help="Number of training rounds for phase 1.")
training_group.add_argument("--training_rounds_v2", type=int, help="Number of training rounds for phase 2.")
training_group.add_argument("--lr_time_1", type=float, help="Learning rate for the first phase.")
training_group.add_argument("--lr_time_2", type=float, help="Learning rate for the second phase.")
training_group.add_argument("--min_lr_time_1", type=float, help="Minimum learning rate for the first phase.")
training_group.add_argument("--min_lr_time_2", type=float, help="Minimum learning rate for the second phase.")
training_group.add_argument("--momentum_time_1", type=float, help="Momentum for the first phase.")
training_group.add_argument("--weight_decay_time_1", type=float, help="Weight decay for the first phase.")
training_group.add_argument("--shift_lr", type=float, help="Learning rate for moving latents.")
training_group.add_argument("--shift_lr_decay", type=float, help="Learning rate decay for the shift phase.")
training_group.add_argument("--lr_time_decay", type=float, help="Learning rate decay for the time phase.")
training_group.add_argument("--patient", type=int, help="Patient for the time phase.")
training_group.add_argument("--lr2_patient", type=int, help="Patient for the second phase.")
training_group.add_argument("--no_v1", action="store_true", help="Skip the first phase.")
training_group.add_argument("--visualize", action="store_true", help="Visualize.")
training_group.add_argument("--low_gpu", action="store_true", help="If we using low-mem gpu, we need to use checkpoint.")
training_group.add_argument("--scale", type=int, help="Guidance scale")
training_group.add_argument("--match_prior", action="store_true", help="Whether to initial params by prior timesteps")
testing_group = parser.add_argument_group('Testing Parameters')
testing_group.add_argument("--load_from_version", type=int, default=2, help="Load from whihc version, default=2")
testing_group.add_argument("--gits_ts", type=str, help="Gits timesteps")
testing_group.add_argument("--use_gits", action="store_true", help="Use pre-computed gits timesteps")
testing_group.add_argument("--learn", action="store_true", help="Load from learned timesteps.")
testing_group.add_argument("--load_from", type=str, help="Ckpt path")
testing_group.add_argument("--skip_type", type=str, help="Type of skip.")
testing_group.add_argument("--num_multi_steps_fid", type=int, help="num_multi_steps_fid")
testing_group.add_argument("--fid_folder", type=str, default=None, help="FID path")
testing_group.add_argument("--sampling_batch_size", type=int, help="Batch size for FID calculation.")
testing_group.add_argument("--sampling_seed", type=int, help="Sampling seed for FID calculation")
testing_group.add_argument("--ref_path", type=str, help="Path to dataset reference statistics.")
testing_group.add_argument("--total_samples", type=int, help="Total number of sample for FID calculation.")
testing_group.add_argument("--save_png", action="store_true", help="Save generated img in png.")
testing_group.add_argument("--save_pt", action="store_true", help="Save generated img and latent in pt files.")
other_group = parser.add_argument_group('Other Parameters')
other_group.add_argument("--prompt_path", type=str, help="Prompt json path for stable diff")
other_group.add_argument("--num_prompts", type=int, default=5, help="Number of prompts we want to use, default 5")
args = parser.parse_args()
# Load the config file if specified
if args.all_config and os.path.isfile(args.all_config):
with open(args.all_config, 'r') as f:
config = yaml.safe_load(f)
# Override the arguments with config values if they are None
for key, value in config.items():
if not hasattr(args, key) or getattr(args, key) is None:
setattr(args, key, value)
return args
def compute_distance_between_two(x, y, n_channels=3, resolution=256):
'''
x: bs x 3 x 256 x 256
y: bs x 3 x 256 x 256
'''
square_distance = (x - y) ** 2
distance = square_distance.sum(dim=(1, 2, 3)) / (n_channels * resolution * resolution)
return distance
def compute_distance_between_two_L1(x, y, n_channels=3, resolution=256):
'''
x: bs x 3 x 256 x 256
y: bs x 3 x 256 x 256
'''
square_distance = torch.abs(x - y)
distance = square_distance.sum(dim=(1, 2, 3)) / (n_channels * resolution * resolution)
return distance
def get_solvers(solver_name: str, NFEs: int, order:int, noise_schedule: NoiseScheduleVE, unipc_variant: Optional[str] = None):
solver_extra_params = dict()
if solver_name == 'euler':
steps = NFEs
solver = Euler(noise_schedule)
elif solver_name == 'heun':
steps = NFEs // 2
solver = Heun(noise_schedule)
elif solver_name == 'dpm_solver':
solver = DPM_Solver(noise_schedule)
dpm_steps, dpm_orders = solver.compute_K_and_order(NFEs, order=order)
solver_extra_params['dpm_orders'] = dpm_orders
solver_extra_params['NFEs'] = NFEs
solver_extra_params['dpm_steps'] = dpm_steps
steps = dpm_steps
elif solver_name == 'dpm_solver++':
steps = NFEs
solver = DPM_SolverPP(noise_schedule)
elif solver_name == 'uni_pc':
steps = NFEs
solver = UniPC(noise_schedule, variant=unipc_variant)
elif solver_name == 'ipndm':
steps = NFEs
solver = iPNDM(noise_schedule)
else:
raise NotImplementedError
return solver, steps, solver_extra_params
def save_arguments_to_yaml(args, filename):
with open(filename, 'w') as file:
yaml.dump(vars(args), file)
def adjust_hyper(args, resolution=64, channel=3):
parse_prior_timesteps(args)
if args.shift_lr is None:
args.shift_lr = 3.0 * 4 / args.steps
if not args.fix_bound:
args.prior_bound = 0.001 * resolution * resolution * channel / (args.steps ** 2)
args.lr_time_2 = args.lr_time_2 / args.steps
args.lr_time_2 = round(args.lr_time_2, 8)
# round prior_bound
args.prior_bound = round(args.prior_bound, 8)
# round shift_lr
args.shift_lr = round(args.shift_lr, 8)
return args
def create_desc(args):
NFEs = args.steps
method_full = args.solver_name
desc = f"{method_full}-N{NFEs}-b{args.prior_bound}-{args.loss_type}-lr2{args.lr_time_2}"
desc += f"rv1{args.training_rounds_v1}-rv2{args.training_rounds_v2}-seed{args.seed}"
if args.no_v1:
desc += "-no_v1_only_v2"
if args.match_prior:
desc += "-match_prior"
return desc
def prepare_paths(args):
skip_type=""
if args.learn:
if args.load_from is None:
desc = create_desc(args)
args.log_path = os.path.join(args.log_path, desc)
args.load_from = os.path.join(args.log_path, f'best_v{args.load_from_version}.pt')
else:
args.log_path = os.path.dirname(args.load_from)
desc = os.path.basename(args.log_path)
# if not is_trained(args.log_path):
# raise ValueError("Model not trained!")
else:
NFEs = args.steps
solver_name = args.solver_name
skip_type = args.skip_type
desc = f"{solver_name}_NFE{NFEs}_{skip_type}_seed{args.seed}"
# create fid folder
if args.fid_folder:
os.makedirs(args.fid_folder, exist_ok=True)
fid_log_path = os.path.join(args.fid_folder, f"{desc}.txt")
else:
fid_log_path = None
return desc, fid_log_path, skip_type
def check_fid_file(fid_log_path):
if os.path.exists(fid_log_path):
# check if FID has been computed
with open(fid_log_path, "r") as f:
scores = f.read()
# check if fid is a number
try:
scores = [float(_) for _ in scores.strip().split()]
if len(scores) == 1:
print(f"FID: {scores[0]}")
elif len(scores) == 2:
print(f"FID: {scores[0]}")
print(f"IS: {scores[1]}")
else:
return False
return True
except ValueError:
return False
return False
def is_trained(path):
log_path = os.path.join(path, 'log.txt')
print(log_path)
if not os.path.isfile(log_path):
print("log.txt not exist")
return False
last_line = ""
# Open the file in read mode
with open(log_path, 'r') as f:
# Read each line in the file
for line in f:
# Strip any leading or trailing whitespace
stripped_line = line.strip()
# Check if the line is not empty
if stripped_line:
last_line = stripped_line # Update last non-empty line
return "Training time" in last_line
def move_tensor_to_device(*args, device):
return [arg.to(device) if arg is not None else arg for arg in args]