-
-
Notifications
You must be signed in to change notification settings - Fork 218
/
Copy pathjson_to_csv.py
99 lines (83 loc) · 2.51 KB
/
json_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import sys
import json
import csv
import io
##
# Convert to string keeping encoding in mind...
##
def to_string(s):
try:
return str(s)
except:
#Change the encoding type if needed
return s.encode('utf-8')
##
# This function converts an item like
# {
# "item_1":"value_11",
# "item_2":"value_12",
# "item_3":"value_13",
# "item_4":["sub_value_14", "sub_value_15"],
# "item_5":{
# "sub_item_1":"sub_item_value_11",
# "sub_item_2":["sub_item_value_12", "sub_item_value_13"]
# }
# }
# To
# {
# "node_item_1":"value_11",
# "node_item_2":"value_12",
# "node_item_3":"value_13",
# "node_item_4_0":"sub_value_14",
# "node_item_4_1":"sub_value_15",
# "node_item_5_sub_item_1":"sub_item_value_11",
# "node_item_5_sub_item_2_0":"sub_item_value_12",
# "node_item_5_sub_item_2_0":"sub_item_value_13"
# }
##
def reduce_item(key, value):
global reduced_item
#Reduction Condition 1
if type(value) is list:
i=0
for sub_item in value:
reduce_item(key+'_'+to_string(i), sub_item)
i=i+1
#Reduction Condition 2
elif type(value) is dict:
sub_keys = value.keys()
for sub_key in sub_keys:
reduce_item(key+'_'+to_string(sub_key), value[sub_key])
#Base Condition
else:
reduced_item[to_string(key)] = to_string(value)
if __name__ == "__main__":
if len(sys.argv) != 4:
print ("\nUsage: python json_to_csv.py <node> <json_in_file_path> <csv_out_file_path>\n")
else:
#Reading arguments
node = sys.argv[1]
json_file_path = sys.argv[2]
csv_file_path = sys.argv[3]
with io.open(json_file_path, 'r', encoding='utf-8-sig') as fp:
json_value = fp.read()
raw_data = json.loads(json_value)
try:
data_to_be_processed = raw_data[node]
except:
data_to_be_processed = raw_data
processed_data = []
header = []
for item in data_to_be_processed:
reduced_item = {}
reduce_item(node, item)
header += reduced_item.keys()
processed_data.append(reduced_item)
header = list(set(header))
header.sort()
with open(csv_file_path, 'w+') as f:
writer = csv.DictWriter(f, header, quoting=csv.QUOTE_ALL)
writer.writeheader()
for row in processed_data:
writer.writerow(row)
print ("Just completed writing csv file with %d columns" % len(header))