From c916d7032b97c13b1219c401301dc4d141e5354f Mon Sep 17 00:00:00 2001 From: md-arif-shaikh Date: Wed, 27 Nov 2024 12:01:12 +0530 Subject: [PATCH] rename interp kwargs --- gw_eccentricity/eccDefinition.py | 284 +++++++++++++---------------- gw_eccentricity/gw_eccentricity.py | 4 +- 2 files changed, 131 insertions(+), 157 deletions(-) diff --git a/gw_eccentricity/eccDefinition.py b/gw_eccentricity/eccDefinition.py index 7452d9d..f1bf023 100644 --- a/gw_eccentricity/eccDefinition.py +++ b/gw_eccentricity/eccDefinition.py @@ -202,7 +202,7 @@ def __init__(self, dataDict, num_orbits_to_exclude_before_merger=2, extra_kwargs: dict A dictionary of any extra kwargs to be passed. Allowed kwargs are: - extrema_interp_kwargs: dict + special_interp_kwargs_for_extrema: dict A dictionary with a single key matching the current `omega_gw_extrema_interpolation_method`. See under `omega_gw_extrema_interpolation_method` for more details on @@ -220,7 +220,7 @@ def __init__(self, dataDict, num_orbits_to_exclude_before_merger=2, - "rational_fit": default kwargs are set using `utils.get_default_rational_fit_kwargs` - non_extrema_interp_kwargs: dict + general_interp_kwargs: dict Dictionary of arguments to be passed to the spline interpolation routine (scipy.interpolate.InterpolatedUnivariateSpline) used to @@ -404,24 +404,24 @@ def __init__(self, dataDict, num_orbits_to_exclude_before_merger=2, f"`{self.omega_gw_extrema_interpolation_method}`. Should be " f"of {self.available_omega_gw_extrema_interpolation_methods.keys()}") # check extrema interp kwargs - self.check_extrema_interp_kwargs(extra_kwargs) + self.check_special_interp_kwargs_for_extrema(extra_kwargs) # set extrema interpolation kwargs - self.extrema_interp_kwargs = check_kwargs_and_set_defaults( + self.special_interp_kwargs_for_extrema = check_kwargs_and_set_defaults( self.extra_kwargs[ - "extrema_interp_kwargs"][ + "special_interp_kwargs_for_extrema"][ self.omega_gw_extrema_interpolation_method], - self.get_default_extrema_interp_kwargs(), - "extrema_interp_kwargs", - "eccDefinition.get_default_extrema_interp_kwargs()") + self.get_default_special_interp_kwargs_for_extrema(), + "special_interp_kwargs_for_extrema", + "eccDefinition.get_default_special_interp_kwargs_for_extrema()") # set other variables required for the omega_gw extrema interpolation # method self.set_other_variables_for_extrema_interpolation() # set spline interpolation kwargs to be used for interpolating data # other than the extrema. - self.non_extrema_interp_kwargs = check_kwargs_and_set_defaults( - self.extra_kwargs["non_extrema_interp_kwargs"], + self.general_interp_kwargs = check_kwargs_and_set_defaults( + self.extra_kwargs["general_interp_kwargs"], get_default_spline_kwargs(), - "non_extrema_interp_kwargs", + "general_interp_kwargs", "utils.get_default_spline_kwargs()") self.available_averaging_methods \ = self.get_available_omega_gw_averaging_methods() @@ -1054,7 +1054,7 @@ def get_default_extrema_finding_kwargs(self, width): "plateau_size": None} return default_extrema_finding_kwargs - def get_default_extrema_interp_kwargs(self): + def get_default_special_interp_kwargs_for_extrema(self): """Get default kwargs to be passed to extrema interpolating method. Accurate interpolation of omega_gw extrema is crucial for obtaining @@ -1062,7 +1062,7 @@ def get_default_extrema_interp_kwargs(self): interpolation method, this function returns the default kwargs to be passed to the interpolating function. """ - allowed_methods = self.extra_kwargs["extrema_interp_kwargs"].keys() + allowed_methods = self.extra_kwargs["special_interp_kwargs_for_extrema"].keys() if self.omega_gw_extrema_interpolation_method == "spline": kwargs = get_default_spline_kwargs() elif self.omega_gw_extrema_interpolation_method == "rational_fit": @@ -1073,32 +1073,33 @@ def get_default_extrema_interp_kwargs(self): f"Allowed methods are {allowed_methods}") return kwargs - def check_extrema_interp_kwargs(self, extra_kwargs): + def check_special_interp_kwargs_for_extrema(self, extra_kwargs): """Check extrema interp kwargs provided in extra_kwargs. - The `extrema_interp_kwargs` should have exactly one + The `special_interp_kwargs_for_extrema` should have exactly one key matching the current `omega_gw_extrema_interpolation_method`. """ - if extra_kwargs is not None and "extrema_interp_kwargs" in extra_kwargs: + if (extra_kwargs is not None + and "special_interp_kwargs_for_extrema" in extra_kwargs): # check that kwargs for only one extrema interpolation method is # provided. common_message = ( - "The input `extrema_interp_kwargs` must contain a single " - "key, matching the current " + "The input `special_interp_kwargs_for_extrema` must contain " + "a single key, matching the current " "`omega_gw_extrema_interpolation_method` " f"'{self.omega_gw_extrema_interpolation_method}', " "with a dictionary of kwargs for " f"'{self.omega_gw_extrema_interpolation_method}' " "as its value.") extrema_interp_keys \ - = list(extra_kwargs["extrema_interp_kwargs"].keys()) + = list(extra_kwargs["special_interp_kwargs_for_extrema"].keys()) if len(extrema_interp_keys) == 0: raise Exception( - "Dictionay provided by 'extrema_interp_kwargs' " + "Dictionay provided via 'special_interp_kwargs_for_extrema'" " in 'extra_kwargs' can not be empty.\n" f"{common_message}" ) - # check that the key in extrema_interp_kwargs matches + # check that the key in special_interp_kwargs_for_extrema matches # `omega_gw_extrema_interpolation_method` if len(extrema_interp_keys) == 1 and ( extrema_interp_keys[0] @@ -1106,8 +1107,8 @@ def check_extrema_interp_kwargs(self, extra_kwargs): raise Exception( "`omega_gw_extrema_interpolation_method` is " f"{self.omega_gw_extrema_interpolation_method} but the " - "kwargs in 'extrema_interp_kwargs' via 'extra_kwargs' is " - f"for {extrema_interp_keys[0]}.\n" + "kwargs in 'special_interp_kwargs_for_extrema' via " + f"'extra_kwargs' is for {extrema_interp_keys[0]}.\n" f"{common_message}" ) if len(extrema_interp_keys) > 1: @@ -1124,7 +1125,7 @@ def set_other_variables_for_extrema_interpolation(self): # set verbose to debug_level. If verbose is True, then it prints # information of each iteration for rational fits for a given # degree. - self.extrema_interp_kwargs["verbose"] = self.debug_level + self.special_interp_kwargs_for_extrema["verbose"] = self.debug_level # keep history of rational fit degree and nonmonotonicity of the # corresponding fits self.rational_fit_nonmonotonicity_history = { @@ -1136,8 +1137,8 @@ def set_other_variables_for_extrema_interpolation(self): def get_default_extra_kwargs(self): """Defaults for additional kwargs.""" default_extra_kwargs = { - "non_extrema_interp_kwargs": {}, - "extrema_interp_kwargs": { + "general_interp_kwargs": {}, + "special_interp_kwargs_for_extrema": { "spline": {}, "rational_fit": {}}, "extrema_finding_kwargs": {}, # Gets overridden in methods like @@ -1441,66 +1442,6 @@ def get_good_extrema(self, pericenters, apocenters, pericenters, apocenters) return pericenters, apocenters - def get_spline_interpolant_for_non_extrema( - self, oldX, oldY, allowExtrapolation=False, interpolator="spline"): - """Get spline interpolant for data other than the omega_gw extrema. - - Interpolating the omega_gw extrema could be challenging, particularly - near the merger due to the rapid change in the omega_gw values and - limited number of data points. Thus, it requires special treatment. For - other data, this problem is less likely to occur. Therefore, we use - this function to interpolate data other than omega_gw extrema. The - spline kwargs for this function is provided by `extra_kwargs` using the - key "non_extrema_interp_kwargs". - - A wrapper of utils.get_interpolant with check_kwargs=False. - This is to make sure that the checking of kwargs is not performed - everytime the interpolation function is called. Instead, the kwargs - are checked once in the init and passed to the interpolation - function without repeating checks. - """ - return get_interpolant(oldX, oldY, allowExtrapolation, interpolator, - spline_kwargs=self.non_extrema_interp_kwargs, - check_kwargs=False) - - def get_spline_interpolant_for_extrema( - self, oldX, oldY, allowExtrapolation=False, interpolator="spline"): - """Get spline interpolant for omega_gw extrema. - - Same as `get_spline_interpolant_for_non_extrema` but uses the - `spline_kwargs` provided via `self.extrema_interp_kwargs`. For more, - see `get_spline_interpolant_for_non_extrema`. - """ - return get_interpolant(oldX, oldY, allowExtrapolation, interpolator, - spline_kwargs=self.extrema_interp_kwargs, - check_kwargs=False) - - def spline_interpolate_non_extrema(self, newX, oldX, oldY, allowExtrapolation=False, - interpolator="spline"): - """Get interpolated values using spline for data other than omega_gw - extrema. - - A wrapper of utils.interpolate with check_kwargs=False for reasons - explained in the documentation of - `get_spline_interpolant_for_non_extrema` function. - """ - return interpolate(newX, oldX, oldY, allowExtrapolation, interpolator, - spline_kwargs=self.non_extrema_interp_kwargs, - check_kwargs=False) - - def get_rational_fit_wrapper(self, x, y): - """Get rational fit. - - A wrapper of `utils.get_rational_fit` with check_kwargs=False. This is - to make sure that the checking of kwargs is not performed everytime the - rational fit function is called. Instead, the kwargs are checked once - in the init and passed to the rational fit function without repeating - checks. - """ - return get_rational_fit(x, y, - rational_fit_kwargs=self.extrema_interp_kwargs, - check_kwargs=False) - def get_rational_fit_for_extrema(self, x, y, data_name=None): """Get rational fit with adaptive numerator and denominator degree. @@ -1513,12 +1454,12 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): the previous valid monotonic fit. The initial degrees for the rational fit can be specified through - `extrema_interp_kwargs` in `extra_kwargs` with the key "rational_fit". - (See `extrema_interp_kwargs` under `extra_kwargs` for more details) - Default values are provided by `get_default_rational_fit_kwargs`, where - both degrees are set to `None`. If both degrees remain `None`, - appropriate starting values are determined using - `self.get_approximate_degree_for_rational_fit`. + `special_interp_kwargs_for_extrema` in `extra_kwargs` with the key + "rational_fit". (See `special_interp_kwargs_for_extrema` under + `extra_kwargs` for more details) Default values are provided by + `get_default_rational_fit_kwargs`, where both degrees are set to + `None`. If both degrees remain `None`, appropriate starting values are + determined using `self.get_approximate_degree_for_rational_fit`. """ # make sure that data_name is not None. A data_name is needed to # update the optimal values of the numerator and denominator degrees @@ -1544,32 +1485,37 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): # as the ideal degree can change based on the eccentricity which we do # not know apriori. The true optimal values are determined through # further iterations. - if self.extrema_interp_kwargs["num_degree"] is None \ - and self.extrema_interp_kwargs["denom_degree"] is None: - self.extrema_interp_kwargs["num_degree"], self.extrema_interp_kwargs["denom_degree"] = \ + if self.special_interp_kwargs_for_extrema["num_degree"] is None \ + and self.special_interp_kwargs_for_extrema["denom_degree"] is None: + self.special_interp_kwargs_for_extrema["num_degree"], \ + self.special_interp_kwargs_for_extrema["denom_degree"] = \ self.get_approximate_degree_for_rational_fit() - elif self.extrema_interp_kwargs["num_degree"] is None: - self.extrema_interp_kwargs["num_degree"] = self.extrema_interp_kwargs["denom_degree"] - elif self.extrema_interp_kwargs["denom_degree"] is None: - self.extrema_interp_kwargs["denom_degree"] = self.extrema_interp_kwargs["num_degree"] - - rat_fit = self.get_rational_fit_wrapper(x, y) + elif self.special_interp_kwargs_for_extrema["num_degree"] is None: + self.special_interp_kwargs_for_extrema["num_degree"] \ + = self.special_interp_kwargs_for_extrema["denom_degree"] + elif self.special_interp_kwargs_for_extrema["denom_degree"] is None: + self.special_interp_kwargs_for_extrema["denom_degree"] \ + = self.special_interp_kwargs_for_extrema["num_degree"] + + rat_fit = get_rational_fit( + x, y, rational_fit_kwargs=self.special_interp_kwargs_for_extrema, + check_kwargs=False) x_test = np.arange(x[0], x[-1], self.t[1] - self.t[0]) # save the degrees for checks at each step of iterations for finding # the optimal degrees - old_num_degree = self.extrema_interp_kwargs["num_degree"] - old_denom_degree = self.extrema_interp_kwargs["denom_degree"] + old_num_degree = self.special_interp_kwargs_for_extrema["num_degree"] + old_denom_degree = self.special_interp_kwargs_for_extrema["denom_degree"] # Check for nonmonotonicity and lower degrees if needed fit_is_nonmonotonic = self.check_if_first_derivative_is_not_strictly_monotonic( x_test, rat_fit(x_test), 1.0, data_name) while fit_is_nonmonotonic: - if self.extrema_interp_kwargs["num_degree"] > 1: - self.extrema_interp_kwargs["num_degree"] -= 1 - if self.extrema_interp_kwargs["denom_degree"] > 1: - self.extrema_interp_kwargs["denom_degree"] -= 1 - if self.extrema_interp_kwargs["num_degree"] == 1 \ - and self.extrema_interp_kwargs["denom_degree"] == 1: + if self.special_interp_kwargs_for_extrema["num_degree"] > 1: + self.special_interp_kwargs_for_extrema["num_degree"] -= 1 + if self.special_interp_kwargs_for_extrema["denom_degree"] > 1: + self.special_interp_kwargs_for_extrema["denom_degree"] -= 1 + if self.special_interp_kwargs_for_extrema["num_degree"] == 1 \ + and self.special_interp_kwargs_for_extrema["denom_degree"] == 1: debug_message( "Both numerator and denominator degrees are equal to 1 " "and cannot be lowered further.", @@ -1578,13 +1524,19 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): debug_message( "Lowering degrees to " - f"num_degree={self.extrema_interp_kwargs['num_degree']}, " - f"denom_degree={self.extrema_interp_kwargs['denom_degree']} " + "num_degree=" + f"{self.special_interp_kwargs_for_extrema['num_degree']}, " + "denom_degree=" + f"{self.special_interp_kwargs_for_extrema['denom_degree']} " "and retrying.", debug_level=self.debug_level, important=False) # build new fit and check monotonicity - rat_fit = self.get_rational_fit_wrapper(x, y) - fit_is_nonmonotonic = self.check_if_first_derivative_is_not_strictly_monotonic( + rat_fit = get_rational_fit( + x, y, + rational_fit_kwargs=self.special_interp_kwargs_for_extrema, + check_kwargs=False) + fit_is_nonmonotonic \ + = self.check_if_first_derivative_is_not_strictly_monotonic( x_test, rat_fit(x_test), 1.0, data_name) # If fit with initial degree is monotonic, try increasing the degree # for a better fit @@ -1595,12 +1547,18 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): while not fit_is_nonmonotonic: # Increase the degrees for both numerator and denominator - new_num_degree = self.extrema_interp_kwargs["num_degree"] + 1 - new_denom_degree = self.extrema_interp_kwargs["denom_degree"] + 1 - self.extrema_interp_kwargs["num_degree"], self.extrema_interp_kwargs["denom_degree"] \ + new_num_degree \ + = self.special_interp_kwargs_for_extrema["num_degree"] + 1 + new_denom_degree \ + = self.special_interp_kwargs_for_extrema["denom_degree"] + 1 + self.special_interp_kwargs_for_extrema["num_degree"],\ + self.special_interp_kwargs_for_extrema["denom_degree"] \ = new_num_degree, new_denom_degree # build new fit and check monotonicity - new_rat_fit = self.get_rational_fit_wrapper(x, y) + new_rat_fit = get_rational_fit( + x, y, + rational_fit_kwargs=self.special_interp_kwargs_for_extrema, + check_kwargs=False) fit_is_nonmonotonic \ = self.check_if_first_derivative_is_not_strictly_monotonic( x_test, new_rat_fit(x_test), 1.0, data_name) @@ -1608,13 +1566,14 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): # Revert to previous fit and degrees if nonmonotonicity is # detected debug_message( - "Increasing degrees caused nonmonotonicity. Reverting to " - f"last monotonic fit with num_degree={last_monotonic_num_degree} " - f"and denom_degree={last_monotonic_denom_degree}.", + "Increasing degrees caused nonmonotonicity. " + "Reverting to last monotonic fit with " + f"num_degree={last_monotonic_num_degree} and " + f"denom_degree={last_monotonic_denom_degree}.", debug_level=self.debug_level, important=False) - self.extrema_interp_kwargs["num_degree"] \ + self.special_interp_kwargs_for_extrema["num_degree"] \ = last_monotonic_num_degree - self.extrema_interp_kwargs["denom_degree"] \ + self.special_interp_kwargs_for_extrema["denom_degree"] \ = last_monotonic_denom_degree rat_fit = last_monotonic_rat_fit break @@ -1626,8 +1585,8 @@ def get_rational_fit_for_extrema(self, x, y, data_name=None): # update final degrees used to build the fit self.rational_fit_degrees[data_name] = ( - self.extrema_interp_kwargs["num_degree"], - self.extrema_interp_kwargs["denom_degree"]) + self.special_interp_kwargs_for_extrema["num_degree"], + self.special_interp_kwargs_for_extrema["denom_degree"]) return rat_fit def get_approximate_degree_for_rational_fit(self): @@ -1670,15 +1629,15 @@ def check_if_first_derivative_is_not_strictly_monotonic( == "rational_fit": if data_name in self.rational_fit_nonmonotonicity_history: self.rational_fit_nonmonotonicity_history[data_name].update( - {(self.extrema_interp_kwargs['num_degree'], - self.extrema_interp_kwargs['num_degree']): + {(self.special_interp_kwargs_for_extrema['num_degree'], + self.special_interp_kwargs_for_extrema['num_degree']): is_not_strictly_monotonic}) return is_not_strictly_monotonic def get_available_omega_gw_extrema_interpolation_methods(self): """Return available omega_gw extrema interpolation methods.""" available_methods = { - "spline": self.get_spline_interpolant_for_extrema, + "spline": get_interpolant, "rational_fit": self.get_rational_fit_for_extrema, } return available_methods @@ -1718,12 +1677,13 @@ def get_omega_gw_extrema_interpolant(self, extrema_type="pericenters"): method = self.available_omega_gw_extrema_interpolation_methods[ self.omega_gw_extrema_interpolation_method] if self.omega_gw_extrema_interpolation_method == "rational_fit": - # rational fit method `get_rational_fit_for_extrema` takes an - # additional argument return method(self.t[extrema], self.omega_gw[extrema], extrema_type) - else: - return method(self.t[extrema], self.omega_gw[extrema]) + if self.omega_gw_extrema_interpolation_method == "spline": + return method( + self.t[extrema], self.omega_gw[extrema], + spline_kwargs=self.special_interp_kwargs_for_extrema, + check_kwargs=False) else: raise Exception( f"Sufficient number of {extrema_type} are not found." @@ -2026,11 +1986,11 @@ def measure_ecc(self, tref_in=None, fref_in=None): = self.check_num_extrema(apocenters, "apocenters") # If the eccentricity is too small for a method to find the extrema, - # and `return_zero_if_small_ecc_failure` is true, then we set the eccentricity and - # mean anomaly to zero and return them. In this case, the rest of the - # code in this function is not executed, and therefore, many variables - # that are needed for making diagnostic plots are not computed. Thus, - # in such cases, the diagnostic plots may not work. + # and `return_zero_if_small_ecc_failure` is true, then we set the + # eccentricity and mean anomaly to zero and return them. In this case, + # the rest of the code in this function is not executed, and therefore, + # many variables that are needed for making diagnostic plots are not + # computed. Thus, in such cases, the diagnostic plots may not work. if any([insufficient_pericenters_but_long_waveform, insufficient_apocenters_but_long_waveform]) \ and self.return_zero_if_small_ecc_failure: @@ -2118,8 +2078,10 @@ def measure_ecc(self, tref_in=None, fref_in=None): raise Exception("Reference time must be within two pericenters.") # Build omega_gw extrema interpolants - self.omega_gw_pericenters_interp = self.get_omega_gw_extrema_interpolant("pericenters") - self.omega_gw_apocenters_interp = self.get_omega_gw_extrema_interpolant("apocenters") + self.omega_gw_pericenters_interp \ + = self.get_omega_gw_extrema_interpolant("pericenters") + self.omega_gw_apocenters_interp \ + = self.get_omega_gw_extrema_interpolant("apocenters") # check monotonicity of the interpolants self.check_omega_gw_extrema_interpolants() # compute eccentricity at self.tref_out @@ -2150,13 +2112,16 @@ def check_omega_gw_extrema_interpolants(self): """ # Verify the monotonicity of the first derivative of the omega_gw # interpolant with spline. - if self.extra_kwargs["omega_gw_extrema_interpolation_method"] == "spline": + if self.extra_kwargs["omega_gw_extrema_interpolation_method"] \ + == "spline": # Check if the first derivative of omega_gw at pericenters or # apocenters is non-monotonic if (self.check_if_first_derivative_is_not_strictly_monotonic( - self.t_for_checks, self.omega_gw_pericenters_interp(self.t_for_checks)) or + self.t_for_checks, + self.omega_gw_pericenters_interp(self.t_for_checks)) or self.check_if_first_derivative_is_not_strictly_monotonic( - self.t_for_checks, self.omega_gw_apocenters_interp(self.t_for_checks))): + self.t_for_checks, + self.omega_gw_apocenters_interp(self.t_for_checks))): debug_message( "Nonmonotonic time derivative detected in the spline " "interpolant through extrema. Using rational fit by " @@ -2295,8 +2260,9 @@ def derivative_of_eccentricity(self, t, n=1): self.t_for_checks) if self.ecc_interp is None: - self.ecc_interp = self.get_spline_interpolant_for_non_extrema( - self.t_for_checks, self.ecc_for_checks) + self.ecc_interp = get_interpolant( + self.t_for_checks, self.ecc_for_checks, + spline_kwargs=self.general_interp_kwargs, check_kwargs=False) # Get derivative of ecc(t) using spline return self.ecc_interp.derivative(n=n)(t) @@ -2619,13 +2585,15 @@ def compute_res_amp_gw_and_res_omega_gw(self): # residual quantities can be computed. Above, we check that this # extrapolation does not happen before t_merger, which is where # eccentricity is normally measured. - self.amp_gw_zeroecc_interp = self.spline_interpolate_non_extrema( + self.amp_gw_zeroecc_interp = interpolate( self.t, self.t_zeroecc_shifted, self.amp_gw_zeroecc, - allowExtrapolation=True) + allowExtrapolation=True, spline_kwargs=self.general_interp_kwargs, + check_kwargs=False) self.res_amp_gw = self.amp_gw - self.amp_gw_zeroecc_interp - self.omega_gw_zeroecc_interp = self.spline_interpolate_non_extrema( + self.omega_gw_zeroecc_interp = interpolate( self.t, self.t_zeroecc_shifted, self.omega_gw_zeroecc, - allowExtrapolation=True) + allowExtrapolation=True, spline_kwargs=self.general_interp_kwargs, + check_kwargs=False) self.res_omega_gw = (self.omega_gw - self.omega_gw_zeroecc_interp) def get_t_average_for_orbit_averaged_omega_gw(self): @@ -2756,8 +2724,9 @@ def compute_orbit_averaged_omega_gw_between_extrema(self, t): orbit_averaged_omega_gw, "omega_gw averaged [apocenter to apocenter] and " "[pericenter to pericenter]") - return self.spline_interpolate_non_extrema( - t, self.t_for_orbit_averaged_omega_gw, orbit_averaged_omega_gw) + return interpolate( + t, self.t_for_orbit_averaged_omega_gw, orbit_averaged_omega_gw, + spline_kwargs=self.general_interp_kwargs, check_kwargs=False) def check_monotonicity_of_omega_gw_average(self, omega_gw_average, @@ -2860,8 +2829,9 @@ def compute_mean_of_extrema_interpolants(self, t): def compute_omega_gw_zeroecc(self, t): """Find omega_gw from zeroecc data.""" - return self.spline_interpolate_non_extrema( - t, self.t_zeroecc_shifted, self.omega_gw_zeroecc) + return interpolate( + t, self.t_zeroecc_shifted, self.omega_gw_zeroecc, + spline_kwargs=self.general_interp_kwargs, check_kwargs=False) def get_available_omega_gw_averaging_methods(self): """Return available omega_gw averaging methods.""" @@ -3005,16 +2975,19 @@ def compute_tref_in_and_fref_out_from_fref_in(self, fref_in): # of omega_gw_average. # We get omega_gw_average by evaluating the omega_gw_average(t) # on t, from tmin_for_fref to tmax_for_fref - self.t_for_omega_gw_average, self.omega_gw_average = self.get_omega_gw_average(method) + self.t_for_omega_gw_average, self.omega_gw_average \ + = self.get_omega_gw_average(method) # check that omega_gw_average is monotonically increasing self.check_monotonicity_of_omega_gw_average( self.omega_gw_average, "Interpolated omega_gw_average") # Get tref_in using interpolation - tref_in = self.spline_interpolate_non_extrema(fref_out, + tref_in = interpolate(fref_out, self.omega_gw_average/(2 * np.pi), - self.t_for_omega_gw_average) + self.t_for_omega_gw_average, + spline_kwargs=self.general_interp_kwargs, + check_kwargs=False) # check if tref_in is monotonically increasing if any(np.diff(tref_in) <= 0): debug_message(f"tref_in from fref_in using method {method} is" @@ -3053,7 +3026,8 @@ def get_fref_bounds(self, method=None): frequency. """ if self.omega_gw_average is None: - self.t_for_omega_gw_average, self.omega_gw_average = self.get_omega_gw_average(method) + self.t_for_omega_gw_average, self.omega_gw_average \ + = self.get_omega_gw_average(method) return [min(self.omega_gw_average)/2/np.pi, max(self.omega_gw_average)/2/np.pi] diff --git a/gw_eccentricity/gw_eccentricity.py b/gw_eccentricity/gw_eccentricity.py index 8f83ea4..79ca22c 100644 --- a/gw_eccentricity/gw_eccentricity.py +++ b/gw_eccentricity/gw_eccentricity.py @@ -338,7 +338,7 @@ def measure_eccentricity(tref_in=None, Default value is "inertial". extra_kwargs: A dict of any extra kwargs to be passed. Allowed kwargs are: - extrema_interp_kwargs: dict + special_interp_kwargs_for_extrema: dict A dictionary with a single key matching the current `omega_gw_extrema_interpolation_method`. See under `omega_gw_extrema_interpolation_method` for more details on @@ -356,7 +356,7 @@ def measure_eccentricity(tref_in=None, - "rational_fit": default kwargs are set using `utils.get_default_rational_fit_kwargs` - non_extrema_interp_kwargs: dict + general_interp_kwargs: dict Dictionary of arguments to be passed to the spline interpolation routine (scipy.interpolate.InterpolatedUnivariateSpline) used to interpolate data other than the omega_gw extrema.