-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.py
63 lines (51 loc) · 1.81 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
from detectron2 import model_zoo
import detectron2.utils.comm as comm
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor, DefaultTrainer, launch, default_setup
from detectron2.engine import default_argument_parser
from detectron2.checkpoint import DetectionCheckpointer
from data.datasets import builtin
from mnist import add_stn_config
from detectron2.evaluation import COCOEvaluator, inference_on_dataset, verify_results
def setup(args):
cfg = get_cfg()
add_stn_config(cfg)
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_C4_3x.yaml"))
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
cfg = setup(args)
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)