-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSyntheticMNIST_multislice_functions.py
executable file
·355 lines (272 loc) · 12.5 KB
/
SyntheticMNIST_multislice_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 10 13:31:28 2021
@author: vganapa1
"""
import numpy as np
from SyntheticMNIST_functions import transform_func_vec, \
F, Ft, \
create_folder, \
convert_uint_16
from fpm_functions import create_low_res_stack_multislice, scalar_prop_kernel
from skimage.transform import resize
import tensorflow as tf
import imageio
from zernike_polynomials import get_poly_mat
def convert_img_to_obj(img, NAfilter_synthetic,
vary_phase,
NAfilter_function,
synthetic_NA,
filter_obj_slices=True, randomize_filter=True):
'''
Convert brightfield image to a synthetic complex object
'''
# img ranges from 0 to 1
if vary_phase:
phase_max = np.pi/2*np.random.rand()
else:
phase_max = np.pi/2
# print(phase_max)
# obj = np.exp(1j*(img-0.5)*np.pi)
obj = np.exp(1j*(img-0.5)*phase_max) # ranges from -phase_max to +phase_max
if filter_obj_slices:
if randomize_filter:
NAfilter_synthetic = NAfilter_function(synthetic_NA*(np.random.rand()*.5+.5))
# filter by sythetic NA
O = F(obj)
O = O*NAfilter_synthetic
obj = Ft(O) #low resolution field
return obj
def process_img_multislice(img_stack,
NAfilter_synthetic,
N_obj, Ns, P, Np,
LED_vec, LEDs_used_boolean,
random_transform,
vary_phase,
num_slices,
H_scalar,
H_scalar_f,
filter_obj_slices,
random_flag,
randomize_filter,
NAfilter_function,
synthetic_NA,
vary_pupil,
num_zernike_coeff,
zernike_mat,
change_Ns = False,
):
obj_stack = []
for s in range(num_slices):
if random_flag:
img0 = np.random.rand(N_obj[0],N_obj[1])
else:
img0 = img_stack[s,:,:]
if random_transform:
# random flip or rot90
transform_ind = np.random.randint(0,len(transform_func_vec))
# print('random transform_ind')
# print(transform_ind)
img = transform_func_vec[transform_ind](img0)
if img.shape[0] < N_obj[0] and img.shape[1] < N_obj[1]:
# random resize
resize_x = np.random.randint(img.shape[0], N_obj[0])
resize_y = np.random.randint(img.shape[1], N_obj[1])
img = resize(img, (resize_x, resize_y))
# random shift
pad_x = int(N_obj[0] - img.shape[0])
pad_y = int(N_obj[1] - img.shape[1])
pad_x_0 = np.random.randint(0, pad_x)
pad_x_1 = pad_x - pad_x_0
pad_y_0 = np.random.randint(0, pad_y)
pad_y_1 = pad_y - pad_y_0
img = np.pad(img,((pad_x_0,pad_x_1),(pad_y_0,pad_y_1)), mode = 'constant')
else:
img = img0
obj = convert_img_to_obj(img, NAfilter_synthetic, vary_phase,
NAfilter_function,
synthetic_NA,
filter_obj_slices,
randomize_filter)
obj_stack.append(obj)
if vary_pupil:
pupil_angle_coeff = (np.random.rand(num_zernike_coeff)-0.5)*1e-1
pupil_angle_i = np.sum(zernike_mat*pupil_angle_coeff, axis=2)
P = P*np.exp(1j*pupil_angle_i)
low_res_stack = create_low_res_stack_multislice(obj_stack, N_obj, Ns, \
P, Np, LED_vec[LEDs_used_boolean], \
num_slices, \
H_scalar, H_scalar_f,
np.sum(LEDs_used_boolean), # batch_size
change_Ns,
False, # use_window
None, # window_2d_sqrt
)
low_res_stack = tf.transpose(low_res_stack, perm=[1,2,0]) # put num_leds last
# print(low_res_stack.shape)
obj_stack = np.stack(obj_stack,axis=-1)
return low_res_stack, obj_stack
def process_dataset_multislice(x_train_stack, process_img_func, normalizer, normalizer_ang,
offset, offset_ang,
add_poisson_noise, poisson_noise_multiplier,
save_folder_name, random_flag, truncate_number_train, sub_folder_prefix = 'example_'):
if random_flag:
num_train = truncate_number_train
else:
num_train = x_train_stack.shape[0]
for i in range(num_train):
print(i)
if random_flag:
im_stack, obj_stack = process_img_func(x_train_stack[0,:,:,:])
else:
im_stack, obj_stack = process_img_func(x_train_stack[i,:,:,:])
sub_folder_name = '{}/{}{:06d}'.format(save_folder_name, sub_folder_prefix, i)
# sub_folder_name = save_folder_name + '/' + sub_folder_prefix + str(i)
create_folder(sub_folder_name)
im_stack_converted = convert_uint_16(im_stack.numpy(), normalizer, offset, add_poisson_noise, poisson_noise_multiplier)
np.save(sub_folder_name + '/im_stack.npy', im_stack_converted/float(2**16-1))
file_name_obj = sub_folder_name + '/obj_stack.npy'
np.save(file_name_obj, obj_stack)
for z in range(im_stack_converted.shape[-1]):
# imageio.imwrite as a png
num_str = str(z)
file_name = sub_folder_name + '/Photo' + '0'*(4-len(num_str)) + num_str + '.png'
imageio.imwrite(file_name, im_stack_converted[:,:,z])
# save object stack
# save object real and imag
obj_re = np.real(obj_stack)
obj_im = np.imag(obj_stack)
obj_re_converted = convert_uint_16(obj_re, normalizer_ang[0], offset_ang[0], add_poisson_noise, poisson_noise_multiplier)
obj_im_converted = convert_uint_16(obj_im, normalizer_ang[1],offset_ang[1], add_poisson_noise, poisson_noise_multiplier)
sub_folder_reconstruction_name = '{}/{}'.format(sub_folder_name, 'reconstruction')
create_folder(sub_folder_reconstruction_name)
# obj_ang = np.angle(obj_stack)
# obj_ang = obj_ang - np.min(obj_ang)
# obj_ang_converted = convert_uint_16(obj_ang, normalizer_ang, False, poisson_noise_multiplier) # add_poisson_noise == False
# sub_folder_reconstruction_name = '{}/{}'.format(sub_folder_name, 'reconstruction')
# create_folder(sub_folder_reconstruction_name)
for s in range(obj_re_converted.shape[-1]):
# imageio.imwrite as a png
num_str = str(s)
file_name = sub_folder_reconstruction_name + '/Photo' + '0'*(4-len(num_str)) + num_str + '.png'
imageio.imwrite(file_name, obj_re_converted[:,:,s])
for s in range(obj_im_converted.shape[-1]):
# imageio.imwrite as a png
num_str = str(s+obj_re_converted.shape[-1])
file_name = sub_folder_reconstruction_name + '/Photo' + '0'*(4-len(num_str)) + num_str + '.png'
imageio.imwrite(file_name, obj_im_converted[:,:,s])
def create_img_stack(x_train, num_slices, different_slices = False):
x_train_stack = []
for ss in range(num_slices):
if different_slices:
np.random.shuffle(x_train)
x_train_stack.append(x_train.copy())
x_train_stack = np.stack(x_train_stack, axis=1)
return x_train_stack
def synthetic_filter_obj(obj,
NAfilter_synthetic,
batch_size,
num_slices,
):
for b in range(batch_size):
for s in range(num_slices):
obj[b,:,:,s] = Ft(F(obj[b,:,:,s])*NAfilter_synthetic)
return(obj)
def find_Ns(img_coords_xm,
img_coords_ym,
x_patch_size,
y_patch_size,
led_position_xy,
dpix_m,
z_led,
wavelength,
NA,
du,
um_m
):
patch_x_center = img_coords_xm[x_patch_size//2, y_patch_size//2]
patch_y_center = img_coords_ym[x_patch_size//2, y_patch_size//2]
led_position_x = led_position_xy[:,0]
led_position_y = led_position_xy[:,1]
# angles for each LEDs
dd = tf.sqrt((led_position_x-patch_x_center)**2+(led_position_y-patch_y_center)**2+z_led**2)
sin_theta_x = (patch_x_center-led_position_x)/dd
sin_theta_y = (patch_y_center-led_position_y)/dd
cos_theta = z_led/dd
### corresponding spatial freq for each LEDs
xled = sin_theta_x/wavelength
yled = sin_theta_y/wavelength
### spatial freq index for each plane wave relative to the center
idx_u = xled/du[0]
idx_v = yled/du[1]
illumination_na_used = tf.sqrt(sin_theta_x**2+sin_theta_y**2)
# number of brightfield image LEDs
# NBF = len(np.nonzero(illumination_na_used<=NA)[0])
# print('number of brightfield LEDs: ' + str(NBF))
# maxium spatial frequency achievable based on the maximum illumination
# angle from the LED array and NA of the objective
um_p = tf.reduce_max(illumination_na_used)/wavelength+um_m
synthetic_NA = um_p*wavelength
# print('synthetic NA is : ' + str(synthetic_NA))
# resolution achieved after freq post-processing
# dx0_p = 1./um_p/2.
# print('achievable resolution is : ' + str(dx0_p))
# Ns = np.zeros([len(led_position_xy),2])
idx_u=tf.expand_dims(idx_u, -1)
idx_v=tf.expand_dims(idx_v, -1)
Ns = tf.concat((idx_u,idx_v), -1)
return(Ns, synthetic_NA, cos_theta)
def get_real_data_params(image_x,
image_y,
dpix_m,
wavelength,
NA,
zernike_poly_order,
x_crop_size,
y_crop_size,
upsample_factor,
slice_spacing,
f,
):
zernike_mat = get_poly_mat(x_crop_size, y_crop_size, image_x*dpix_m, \
image_y*dpix_m, wavelength, NA,
n_upper_bound = zernike_poly_order, show_figures = False)
# coordinates in um
img_coords_x = dpix_m*(np.arange(image_x) - image_x/2)
img_coords_y = dpix_m*(np.arange(image_y) - image_y/2)
img_coords_xm, img_coords_ym = np.meshgrid(img_coords_x,img_coords_y, indexing='ij')
Np=np.array([x_crop_size, y_crop_size])
N_obj = Np*upsample_factor
dx_obj = dpix_m/upsample_factor
dx_obj = [dx_obj,dx_obj]
H_scalar = scalar_prop_kernel(N_obj,dx_obj,slice_spacing,wavelength)
H_scalar_f = scalar_prop_kernel(N_obj,dx_obj,f,wavelength) # scalar prop from last plane to focal plane
# Maximum spatial frequency of low-resolution images set by NA
um_m = NA/wavelength
# FoV (object space)
FoV = np.array([x_crop_size,y_crop_size])*dpix_m
# Sampling size in Fourier plane
du = 1./FoV
# Low pass filter set-up
m = (np.arange(0, x_crop_size, 1) - x_crop_size/2)*du[0]
n = (np.arange(0, y_crop_size, 1) - y_crop_size/2)*du[1]
# Generate a meshgrid
# mm: vertical
# nn: horizontal
[mm,nn] = np.meshgrid(m,n, indexing='ij')
# Find radius of each pixel from center
ridx = np.sqrt(mm**2+nn**2)
# assume a circular pupil function, low pass filter due to finite NA
pupil = np.zeros(ridx.shape)
pupil[np.nonzero(ridx<um_m)] = 1.
return(zernike_mat,
img_coords_xm,
img_coords_ym,
H_scalar,
H_scalar_f,
du,
um_m,
pupil,
N_obj,
Np)