-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbasic.py
255 lines (217 loc) · 8.2 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
from pathlib import Path
import torch
import torch.nn as nn
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.contrib.handlers import ProgressBar
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Accuracy, Precision, Recall
from ignite.handlers import Checkpoint
from dataflow import sup_prepare_batch, cycle
from ctaugment import stats, deserialize
def to_list_str(v):
if isinstance(v, torch.Tensor):
return " ".join(["%.2f" % i for i in v.tolist()])
return "%.2f" % v
def create_trainer(
train_step,
output_names,
model,
ema_model,
optimizer,
lr_scheduler,
supervised_train_loader,
test_loader,
cfg,
logger,
cta=None,
unsup_train_loader=None,
cta_probe_loader=None,
):
trainer = Engine(train_step)
trainer.logger = logger
output_path = os.getcwd()
to_save = {
"model": model,
"ema_model": ema_model,
"optimizer": optimizer,
"trainer": trainer,
"lr_scheduler": lr_scheduler,
}
if cta is not None:
to_save["cta"] = cta
common.setup_common_training_handlers(
trainer,
train_sampler=supervised_train_loader.sampler,
to_save=to_save,
save_every_iters=cfg.solver.checkpoint_every,
output_path=output_path,
output_names=output_names,
lr_scheduler=lr_scheduler,
with_pbars=False,
clear_cuda_cache=False,
)
ProgressBar(persist=False).attach(
trainer, metric_names="all", event_name=Events.ITERATION_COMPLETED
)
unsupervised_train_loader_iter = None
if unsup_train_loader is not None:
unsupervised_train_loader_iter = cycle(unsup_train_loader)
cta_probe_loader_iter = None
if cta_probe_loader is not None:
cta_probe_loader_iter = cycle(cta_probe_loader)
# Setup handler to prepare data batches
@trainer.on(Events.ITERATION_STARTED)
def prepare_batch(e):
sup_batch = e.state.batch
e.state.batch = {
"sup_batch": sup_batch,
}
if unsupervised_train_loader_iter is not None:
unsup_batch = next(unsupervised_train_loader_iter)
e.state.batch["unsup_batch"] = unsup_batch
if cta_probe_loader_iter is not None:
cta_probe_batch = next(cta_probe_loader_iter)
cta_probe_batch["policy"] = [
deserialize(p) for p in cta_probe_batch["policy"]
]
e.state.batch["cta_probe_batch"] = cta_probe_batch
# Setup handler to update EMA model
@trainer.on(Events.ITERATION_COMPLETED, cfg.ema_decay)
def update_ema_model(ema_decay):
# EMA on parametes
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(ema_decay).add_(param.data, alpha=1.0 - ema_decay)
# Setup handlers for debugging
if cfg.debug:
@trainer.on(Events.STARTED | Events.ITERATION_COMPLETED(every=100))
@idist.one_rank_only()
def log_weights_norms():
wn = []
ema_wn = []
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
wn.append(torch.mean(param.data))
ema_wn.append(torch.mean(ema_param.data))
msg = "\n\nWeights norms"
msg += "\n- Raw model: {}".format(
to_list_str(torch.tensor(wn[:10] + wn[-10:]))
)
msg += "\n- EMA model: {}\n".format(
to_list_str(torch.tensor(ema_wn[:10] + ema_wn[-10:]))
)
logger.info(msg)
rmn = []
rvar = []
ema_rmn = []
ema_rvar = []
for m1, m2 in zip(model.modules(), ema_model.modules()):
if isinstance(m1, nn.BatchNorm2d) and isinstance(m2, nn.BatchNorm2d):
rmn.append(torch.mean(m1.running_mean))
rvar.append(torch.mean(m1.running_var))
ema_rmn.append(torch.mean(m2.running_mean))
ema_rvar.append(torch.mean(m2.running_var))
msg = "\n\nBN buffers"
msg += "\n- Raw mean: {}".format(to_list_str(torch.tensor(rmn[:10])))
msg += "\n- Raw var: {}".format(to_list_str(torch.tensor(rvar[:10])))
msg += "\n- EMA mean: {}".format(to_list_str(torch.tensor(ema_rmn[:10])))
msg += "\n- EMA var: {}\n".format(to_list_str(torch.tensor(ema_rvar[:10])))
logger.info(msg)
# TODO: Need to inspect a bug
# if idist.get_rank() == 0:
# from ignite.contrib.handlers import ProgressBar
#
# profiler = BasicTimeProfiler()
# profiler.attach(trainer)
#
# @trainer.on(Events.ITERATION_COMPLETED(every=200))
# def log_profiling(_):
# results = profiler.get_results()
# profiler.print_results(results)
# Setup validation engine
metrics = {
"accuracy": Accuracy(),
}
if not (idist.has_xla_support and idist.backend() == idist.xla.XLA_TPU):
metrics.update({
"precision": Precision(average=False),
"recall": Recall(average=False),
})
eval_kwargs = dict(
metrics=metrics,
prepare_batch=sup_prepare_batch,
device=idist.device(),
non_blocking=True,
)
evaluator = create_supervised_evaluator(model, **eval_kwargs)
ema_evaluator = create_supervised_evaluator(ema_model, **eval_kwargs)
def log_results(epoch, max_epochs, metrics, ema_metrics):
msg1 = "\n".join(
["\t{:16s}: {}".format(k, to_list_str(v)) for k, v in metrics.items()]
)
msg2 = "\n".join(
["\t{:16s}: {}".format(k, to_list_str(v)) for k, v in ema_metrics.items()]
)
logger.info(
"\nEpoch {}/{}\nRaw:\n{}\nEMA:\n{}\n".format(epoch, max_epochs, msg1, msg2)
)
if cta is not None:
logger.info("\n" + stats(cta))
@trainer.on(
Events.EPOCH_COMPLETED(every=cfg.solver.validate_every)
| Events.STARTED
| Events.COMPLETED
)
def run_evaluation():
evaluator.run(test_loader)
ema_evaluator.run(test_loader)
log_results(
trainer.state.epoch,
trainer.state.max_epochs,
evaluator.state.metrics,
ema_evaluator.state.metrics,
)
# setup TB logging
if idist.get_rank() == 0:
tb_logger = common.setup_tb_logging(
output_path,
trainer,
optimizers=optimizer,
evaluators={"validation": evaluator, "ema validation": ema_evaluator},
log_every_iters=15,
)
if cfg.online_exp_tracking.wandb:
from ignite.contrib.handlers import WandBLogger
wb_dir = Path("/tmp/output-fixmatch-wandb")
if not wb_dir.exists():
wb_dir.mkdir()
_ = WandBLogger(
project="fixmatch-pytorch",
name=cfg.name,
config=cfg,
sync_tensorboard=True,
dir=wb_dir.as_posix(),
reinit=True,
)
resume_from = cfg.solver.resume_from
if resume_from is not None:
resume_from = list(Path(resume_from).rglob("training_checkpoint*.pt*"))
if len(resume_from) > 0:
# get latest
checkpoint_fp = max(resume_from, key=lambda p: p.stat().st_mtime)
assert checkpoint_fp.exists(), "Checkpoint '{}' is not found".format(
checkpoint_fp.as_posix()
)
logger.info("Resume from a checkpoint: {}".format(checkpoint_fp.as_posix()))
checkpoint = torch.load(checkpoint_fp.as_posix())
Checkpoint.load_objects(to_load=to_save, checkpoint=checkpoint)
@trainer.on(Events.COMPLETED)
def release_all_resources():
nonlocal unsupervised_train_loader_iter, cta_probe_loader_iter
if idist.get_rank() == 0:
tb_logger.close()
if unsupervised_train_loader_iter is not None:
unsupervised_train_loader_iter = None
if cta_probe_loader_iter is not None:
cta_probe_loader_iter = None
return trainer