forked from 0x7ff/gaster
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlzfse.c
563 lines (530 loc) · 19.6 KB
/
lzfse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/* Copyright 2023 0x7ff
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lzfse.h"
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#define LZFSE_ENCODE_L_STATES (64)
#define LZFSE_ENCODE_M_STATES (64)
#define LZFSE_ENCODE_D_STATES (256)
#define LZFSE_ENCODE_L_SYMBOLS (20)
#define LZFSE_ENCODE_M_SYMBOLS (20)
#define LZFSE_ENCODE_D_SYMBOLS (64)
#define LZFSE_MATCHES_PER_BLOCK (10000)
#define LZFSE_NO_BLOCK_MAGIC (0x00000000U)
#define LZFSE_ENCODE_LITERAL_STATES (1024)
#define LZFSE_ENCODE_LITERAL_SYMBOLS (256)
#define LZFSE_ENDOFSTREAM_BLOCK_MAGIC (0x24787662U)
#define LZFSE_UNCOMPRESSED_BLOCK_MAGIC (0x2D787662U)
#define LZFSE_COMPRESSEDV1_BLOCK_MAGIC (0x31787662U)
#define LZFSE_COMPRESSEDV2_BLOCK_MAGIC (0x32787662U)
#define LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC (0x6E787662U)
#define LZFSE_LITERALS_PER_BLOCK (4 * LZFSE_MATCHES_PER_BLOCK)
typedef uint16_t fse_state;
typedef struct {
uint8_t k, symbol;
uint16_t delta;
} fse_decoder_entry;
typedef struct {
uint32_t magic, n_raw_bytes;
} uncompressed_block_header;
typedef struct {
uint32_t n_raw_bytes;
} uncompressed_block_decoder_state;
typedef struct {
uint64_t accum;
uint32_t accum_nbits, pad;
} fse_in_stream;
typedef struct {
uint8_t total_bits, value_bits;
uint16_t delta;
uint32_t vbase;
} fse_value_decoder_entry;
typedef struct {
uint32_t n_matches, n_lmd_payload_bytes;
const uint8_t *current_literal;
int32_t l_value, m_value, d_value, pad_0;
fse_in_stream lmd_in_stream;
uint32_t lmd_in_buf;
uint16_t l_state, m_state, d_state, pad_1;
fse_value_decoder_entry l_decoder[LZFSE_ENCODE_L_STATES], m_decoder[LZFSE_ENCODE_M_STATES], d_decoder[LZFSE_ENCODE_D_STATES];
uint32_t literal_decoder[LZFSE_ENCODE_LITERAL_STATES];
uint8_t literals[LZFSE_LITERALS_PER_BLOCK + 64];
uint32_t pad_2;
} lzfse_compressed_block_decoder_state;
typedef struct {
const uint8_t *src, *src_begin, *src_end;
uint8_t *dst, *dst_begin, *dst_end;
uint32_t end_of_stream, block_magic;
lzfse_compressed_block_decoder_state compressed_lzfse_block_state;
uncompressed_block_decoder_state uncompressed_block_state;
uint32_t pad;
} lzfse_decoder_state;
typedef struct {
uint32_t magic, n_raw_bytes;
uint64_t packed_fields[3];
uint8_t freq[2 * (LZFSE_ENCODE_L_SYMBOLS + LZFSE_ENCODE_M_SYMBOLS + LZFSE_ENCODE_D_SYMBOLS + LZFSE_ENCODE_LITERAL_SYMBOLS)];
} lzfse_compressed_block_header_v2;
typedef struct {
uint32_t magic, n_raw_bytes, n_payload_bytes, n_literals, n_matches, n_literal_payload_bytes, n_lmd_payload_bytes;
int32_t literal_bits;
uint16_t literal_state[4];
int32_t lmd_bits;
uint16_t l_state, m_state, d_state, l_freq[LZFSE_ENCODE_L_SYMBOLS], m_freq[LZFSE_ENCODE_M_SYMBOLS], d_freq[LZFSE_ENCODE_D_SYMBOLS], literal_freq[LZFSE_ENCODE_LITERAL_SYMBOLS];
} __attribute__((__packed__, __aligned__(2))) lzfse_compressed_block_header_v1;
static const uint8_t l_extra_bits[LZFSE_ENCODE_L_SYMBOLS] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 8
}, m_extra_bits[LZFSE_ENCODE_M_SYMBOLS] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11
}, d_extra_bits[LZFSE_ENCODE_D_SYMBOLS] = {
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15
};
static const uint32_t l_base_value[LZFSE_ENCODE_L_SYMBOLS] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 28, 60
}, m_base_value[LZFSE_ENCODE_M_SYMBOLS] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24, 56, 312
}, d_base_value[LZFSE_ENCODE_D_SYMBOLS] = {
0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 36, 44, 52, 60, 76, 92, 108, 124, 156, 188, 220, 252, 316, 380, 444, 508, 636, 764, 892, 1020, 1276, 1532, 1788, 2044, 2556, 3068, 3580, 4092, 5116, 6140, 7164, 8188, 10236, 12284, 14332, 16380, 20476, 24572, 28668, 32764, 40956, 49148, 57340, 65532, 81916, 98300, 114684, 131068, 163836, 196604, 229372
};
static uint64_t
fse_mask_lsb(uint64_t x, uint32_t nbits) {
return x & ((1ULL << nbits) - 1U);
}
static uint64_t
fse_extract_bits(uint64_t x, uint32_t start, uint32_t nbits) {
return fse_mask_lsb(x >> start, nbits);
}
static bool
fse_in_init(fse_in_stream *s, int32_t n, const uint8_t **pbuf, const uint8_t *buf_start) {
if(n != 0) {
if(*pbuf < buf_start + sizeof(s->accum)) {
return false;
}
*pbuf -= sizeof(s->accum);
memcpy(&s->accum, *pbuf, sizeof(s->accum));
s->accum_nbits = (uint32_t)(n + 64);
} else {
if(*pbuf < buf_start + sizeof(s->accum) - 1) {
return false;
}
*pbuf -= sizeof(s->accum) - 1;
memcpy(&s->accum, *pbuf, sizeof(s->accum) - 1);
s->accum &= (1ULL << 56U) - 1U;
s->accum_nbits = (uint32_t)(n + 56);
}
if(s->accum_nbits < 56 || s->accum_nbits >= 64 || (s->accum >> s->accum_nbits) != 0) {
return false;
}
return true;
}
static bool
fse_in_flush(fse_in_stream *s, const uint8_t **pbuf, const uint8_t *buf_start) {
uint32_t nbits = (63U - s->accum_nbits) & -sizeof(s->accum);
const uint8_t *buf = *pbuf - (nbits >> 3U);
uint64_t incoming;
if(buf < buf_start) {
return false;
}
*pbuf = buf;
memcpy(&incoming, buf, sizeof(incoming));
s->accum = (s->accum << nbits) | fse_mask_lsb(incoming, nbits);
s->accum_nbits += nbits;
if(s->accum_nbits < 56 || s->accum_nbits >= 64 || (s->accum >> s->accum_nbits) != 0) {
return false;
}
return true;
}
static uint64_t
fse_in_pull(fse_in_stream *s, uint32_t n) {
uint64_t result;
s->accum_nbits -= n;
result = s->accum >> s->accum_nbits;
s->accum = fse_mask_lsb(s->accum, s->accum_nbits);
return result;
}
static uint8_t
fse_decode(fse_state *pstate, const uint32_t *decoder_table, fse_in_stream *in) {
uint32_t e = decoder_table[*pstate];
*pstate = (fse_state)((e >> 16U) + fse_in_pull(in, e & 0xFFU));
return (uint8_t)fse_extract_bits((uint64_t)e, 8, 8);
}
static int32_t
fse_value_decode(fse_state *pstate, const fse_value_decoder_entry *value_decoder_table, fse_in_stream *in) {
fse_value_decoder_entry entry = value_decoder_table[*pstate];
uint32_t state_and_value_bits = (uint32_t)fse_in_pull(in, entry.total_bits);
*pstate = (fse_state)((uint32_t)entry.delta + (state_and_value_bits >> entry.value_bits));
return (int32_t)((uint64_t)entry.vbase + fse_mask_lsb(state_and_value_bits, entry.value_bits));
}
static bool
fse_init_decoder_table(uint32_t nstates, uint32_t nsymbols, const uint16_t *freq, uint32_t *t) {
uint32_t f, i, j, k, j0, n_clz = (uint32_t)__builtin_clz(nstates), sum_of_freq = 0;
fse_decoder_entry e;
for(i = 0; i < nsymbols; ++i) {
if((f = freq[i]) == 0) {
continue;
}
sum_of_freq += f;
if(sum_of_freq > nstates) {
return false;
}
k = (uint32_t)__builtin_clz(f) - n_clz;
j0 = ((2 * nstates) >> k) - f;
for(j = 0; j < f; ++j) {
e.symbol = (uint8_t)i;
if(j < j0) {
e.k = (uint8_t)k;
e.delta = (uint16_t)(((f + j) << k) - nstates);
} else {
e.k = (uint8_t)(k - 1);
e.delta = (uint16_t)((j - j0) << (k - 1));
}
memcpy(t, &e, sizeof(e));
++t;
}
}
return true;
}
static void
fse_init_value_decoder_table(uint32_t nstates, uint32_t nsymbols, const uint16_t *freq, const uint8_t *symbol_vbits, const uint32_t *symbol_vbase, fse_value_decoder_entry *t) {
uint32_t f, i, j, k, j0, n_clz = (uint32_t)__builtin_clz(nstates);
fse_value_decoder_entry e, ei;
for(i = 0; i < nsymbols; ++i) {
if((f = freq[i]) == 0) {
continue;
}
k = (uint32_t)__builtin_clz(f) - n_clz;
j0 = ((2 * nstates) >> k) - f;
ei.value_bits = symbol_vbits[i];
ei.vbase = symbol_vbase[i];
for(j = 0; j < f; ++j) {
e = ei;
if(j < j0) {
e.total_bits = (uint8_t)k + e.value_bits;
e.delta = (uint16_t)(((f + j) << k) - nstates);
} else {
e.total_bits = (uint8_t)(k - 1) + e.value_bits;
e.delta = (uint16_t)((j - j0) << (k - 1));
}
memcpy(t, &e, sizeof(e));
++t;
}
}
}
static uint32_t
lzfse_decode_v1_freq_value(uint32_t bits, uint32_t *nbits) {
const uint8_t lzfse_freq_nbits_table[] = {
2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14, 2, 3, 2, 5, 2, 3, 2, 8, 2, 3, 2, 5, 2, 3, 2, 14
}, lzfse_freq_value_table[] = {
0, 2, 1, 4, 0, 3, 1, 8, 0, 2, 1, 5, 0, 3, 1, 8, 0, 2, 1, 6, 0, 3, 1, 8, 0, 2, 1, 7, 0, 3, 1, 8
};
uint32_t b = bits & 31U, n = lzfse_freq_nbits_table[b];
*nbits = n;
if(n == 8) {
return 8 + ((bits >> 4U) & 0xFU);
}
if(n == 14) {
return 24 + ((bits >> 4U) & 0x3FFU);
}
return lzfse_freq_value_table[b];
}
static uint32_t
get_field(uint64_t v, uint32_t offset, uint32_t nbits) {
if(nbits == 32) {
return (uint32_t)(v >> offset);
}
return (uint32_t)((v >> offset) & ((1U << nbits) - 1U));
}
static uint32_t
lzfse_decode_v2_header_size(lzfse_compressed_block_header_v2 in) {
return get_field(in.packed_fields[2], 0, 32);
}
static bool
lzfse_decode_v1(lzfse_compressed_block_header_v1 *out, const uint8_t *in, lzfse_compressed_block_header_v2 header_v2) {
uint32_t i, accum, nbits, accum_nbits;
const uint8_t *src, *src_end;
uint16_t *dst;
memset(out, '\0', sizeof(*out));
out->magic = LZFSE_COMPRESSEDV1_BLOCK_MAGIC;
out->n_raw_bytes = header_v2.n_raw_bytes;
out->n_literals = get_field(header_v2.packed_fields[0], 0, 20);
out->n_literal_payload_bytes = get_field(header_v2.packed_fields[0], 20, 20);
out->literal_bits = (int32_t)get_field(header_v2.packed_fields[0], 60, 3) - 7;
out->literal_state[0] = (uint16_t)get_field(header_v2.packed_fields[1], 0, 10);
out->literal_state[1] = (uint16_t)get_field(header_v2.packed_fields[1], 10, 10);
out->literal_state[2] = (uint16_t)get_field(header_v2.packed_fields[1], 20, 10);
out->literal_state[3] = (uint16_t)get_field(header_v2.packed_fields[1], 30, 10);
out->n_matches = get_field(header_v2.packed_fields[0], 40, 20);
out->n_lmd_payload_bytes = get_field(header_v2.packed_fields[1], 40, 20);
out->lmd_bits = (int32_t)get_field(header_v2.packed_fields[1], 60, 3) - 7;
out->l_state = (uint16_t)get_field(header_v2.packed_fields[2], 32, 10);
out->m_state = (uint16_t)get_field(header_v2.packed_fields[2], 42, 10);
out->d_state = (uint16_t)get_field(header_v2.packed_fields[2], 52, 10);
out->n_payload_bytes = out->n_literal_payload_bytes + out->n_lmd_payload_bytes;
src = in + offsetof(lzfse_compressed_block_header_v2, freq);
src_end = in + lzfse_decode_v2_header_size(header_v2);
if(src_end == src) {
return true;
}
dst = out->l_freq;
accum = 0;
accum_nbits = 0;
for(i = 0; i < LZFSE_ENCODE_L_SYMBOLS + LZFSE_ENCODE_M_SYMBOLS + LZFSE_ENCODE_D_SYMBOLS + LZFSE_ENCODE_LITERAL_SYMBOLS; ++i) {
while(src < src_end && accum_nbits + 8 <= 32) {
accum |= (uint32_t)*src << accum_nbits;
accum_nbits += 8;
++src;
}
dst[i] = (uint16_t)lzfse_decode_v1_freq_value(accum, &nbits);
if(nbits > accum_nbits) {
return false;
}
accum >>= nbits;
accum_nbits -= nbits;
}
if(accum_nbits >= 8 || src != src_end) {
return false;
}
return true;
}
static bool
lzfse_decode_lmd(lzfse_decoder_state *s) {
int32_t i, new_d, L = s->compressed_lzfse_block_state.l_value, M = s->compressed_lzfse_block_state.m_value, D = s->compressed_lzfse_block_state.d_value, remaining_bytes = (int32_t)(s->dst_end - s->dst) - 32;
fse_state l_state = s->compressed_lzfse_block_state.l_state, m_state = s->compressed_lzfse_block_state.m_state, d_state = s->compressed_lzfse_block_state.d_state;
const uint8_t *src_start = s->src_begin, *src = s->src + s->compressed_lzfse_block_state.lmd_in_buf, *lit = s->compressed_lzfse_block_state.current_literal;
fse_in_stream in = s->compressed_lzfse_block_state.lmd_in_stream;
uint32_t symbols = s->compressed_lzfse_block_state.n_matches;
uint8_t *dst = s->dst;
if(L != 0 || M != 0) {
goto ExecuteMatch;
}
while(symbols != 0) {
if(!fse_in_flush(&in, &src, src_start)) {
return false;
}
L = fse_value_decode(&l_state, s->compressed_lzfse_block_state.l_decoder, &in);
if(lit + L >= s->compressed_lzfse_block_state.literals + LZFSE_LITERALS_PER_BLOCK + 64) {
return false;
}
M = fse_value_decode(&m_state, s->compressed_lzfse_block_state.m_decoder, &in);
new_d = fse_value_decode(&d_state, s->compressed_lzfse_block_state.d_decoder, &in);
if(new_d != 0) {
D = new_d;
}
--symbols;
ExecuteMatch:
if((uint32_t)D > (uint32_t)(dst + L - s->dst_begin)) {
return false;
}
if(L + M <= remaining_bytes) {
remaining_bytes -= L + M;
memcpy(dst, lit, (size_t)L);
dst += L;
lit += L;
for(i = 0; i < M; ++i) {
dst[i] = dst[i - D];
}
dst += M;
} else {
remaining_bytes += 32;
if(L <= remaining_bytes) {
memcpy(dst, lit, (size_t)L);
dst += L;
lit += L;
remaining_bytes -= L;
} else {
return false;
}
if(M <= remaining_bytes) {
for(i = 0; i < M; ++i) {
dst[i] = dst[i - D];
}
dst += M;
remaining_bytes -= M;
} else {
return false;
}
remaining_bytes -= 32;
}
}
s->dst = dst;
return true;
}
static bool
lzfse_decode(lzfse_decoder_state *s) {
uint32_t i, magic, copy_size, src_space, dst_space;
lzfse_compressed_block_header_v2 header_v2;
lzfse_compressed_block_header_v1 header_v1;
const uint8_t *buf, *buf_start;
fse_state state[4];
size_t header_size;
fse_in_stream in;
for(;;) {
switch(s->block_magic) {
case LZFSE_NO_BLOCK_MAGIC:
if(s->src + sizeof(magic) > s->src_end) {
return false;
}
memcpy(&magic, s->src, sizeof(magic));
if(magic == LZFSE_ENDOFSTREAM_BLOCK_MAGIC) {
s->src += sizeof(magic);
s->end_of_stream = 1;
return true;
}
if(magic == LZFSE_UNCOMPRESSED_BLOCK_MAGIC) {
if(s->src + sizeof(uncompressed_block_header) > s->src_end) {
return false;
}
memcpy(&s->uncompressed_block_state.n_raw_bytes, s->src + offsetof(uncompressed_block_header, n_raw_bytes), sizeof(s->uncompressed_block_state.n_raw_bytes));
s->src += sizeof(uncompressed_block_header);
s->block_magic = magic;
break;
}
if(magic == LZFSE_COMPRESSEDLZVN_BLOCK_MAGIC) {
return false;
}
if(magic == LZFSE_COMPRESSEDV1_BLOCK_MAGIC || magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
if(magic == LZFSE_COMPRESSEDV2_BLOCK_MAGIC) {
if(s->src + offsetof(lzfse_compressed_block_header_v2, freq) > s->src_end) {
return false;
}
memcpy(&header_v2, s->src, sizeof(header_v2));
header_size = lzfse_decode_v2_header_size(header_v2);
if(s->src + header_size > s->src_end || !lzfse_decode_v1(&header_v1, s->src, header_v2)) {
return false;
}
} else {
if(s->src + sizeof(header_v1) > s->src_end) {
return false;
}
memcpy(&header_v1, s->src, sizeof(header_v1));
header_size = sizeof(header_v1);
}
if(s->src + header_size + header_v1.n_literal_payload_bytes + header_v1.n_lmd_payload_bytes > s->src_end) {
return false;
}
s->src += header_size;
s->compressed_lzfse_block_state.n_lmd_payload_bytes = header_v1.n_lmd_payload_bytes;
s->compressed_lzfse_block_state.n_matches = header_v1.n_matches;
fse_init_decoder_table(LZFSE_ENCODE_LITERAL_STATES, LZFSE_ENCODE_LITERAL_SYMBOLS, header_v1.literal_freq, s->compressed_lzfse_block_state.literal_decoder);
fse_init_value_decoder_table(LZFSE_ENCODE_L_STATES, LZFSE_ENCODE_L_SYMBOLS, header_v1.l_freq, l_extra_bits, l_base_value, s->compressed_lzfse_block_state.l_decoder);
fse_init_value_decoder_table(LZFSE_ENCODE_M_STATES, LZFSE_ENCODE_M_SYMBOLS, header_v1.m_freq, m_extra_bits, m_base_value, s->compressed_lzfse_block_state.m_decoder);
fse_init_value_decoder_table(LZFSE_ENCODE_D_STATES, LZFSE_ENCODE_D_SYMBOLS, header_v1.d_freq, d_extra_bits, d_base_value, s->compressed_lzfse_block_state.d_decoder);
buf_start = s->src_begin;
s->src += header_v1.n_literal_payload_bytes;
buf = s->src;
if(!fse_in_init(&in, header_v1.literal_bits, &buf, buf_start)) {
return false;
}
state[0] = header_v1.literal_state[0];
state[1] = header_v1.literal_state[1];
state[2] = header_v1.literal_state[2];
state[3] = header_v1.literal_state[3];
for(i = 0; i < header_v1.n_literals; i += 4) {
if(!fse_in_flush(&in, &buf, buf_start)) {
return false;
}
s->compressed_lzfse_block_state.literals[i] = fse_decode(&state[0], s->compressed_lzfse_block_state.literal_decoder, &in);
s->compressed_lzfse_block_state.literals[i + 1] = fse_decode(&state[1], s->compressed_lzfse_block_state.literal_decoder, &in);
s->compressed_lzfse_block_state.literals[i + 2] = fse_decode(&state[2], s->compressed_lzfse_block_state.literal_decoder, &in);
s->compressed_lzfse_block_state.literals[i + 3] = fse_decode(&state[3], s->compressed_lzfse_block_state.literal_decoder, &in);
}
s->compressed_lzfse_block_state.current_literal = s->compressed_lzfse_block_state.literals;
buf = s->src + header_v1.n_lmd_payload_bytes;
if(!fse_in_init(&in, header_v1.lmd_bits, &buf, s->src)) {
return false;
}
s->compressed_lzfse_block_state.l_state = header_v1.l_state;
s->compressed_lzfse_block_state.m_state = header_v1.m_state;
s->compressed_lzfse_block_state.d_state = header_v1.d_state;
s->compressed_lzfse_block_state.lmd_in_buf = (uint32_t)(buf - s->src);
s->compressed_lzfse_block_state.l_value = s->compressed_lzfse_block_state.m_value = 0;
s->compressed_lzfse_block_state.d_value = -1;
s->compressed_lzfse_block_state.lmd_in_stream = in;
s->block_magic = magic;
break;
}
return false;
case LZFSE_UNCOMPRESSED_BLOCK_MAGIC:
copy_size = s->uncompressed_block_state.n_raw_bytes;
if(copy_size == 0) {
s->block_magic = 0;
break;
}
if(s->src_end <= s->src) {
return false;
}
src_space = (uint32_t)(s->src_end - s->src);
if(copy_size > src_space) {
copy_size = src_space;
}
if(s->dst_end <= s->dst) {
return false;
}
dst_space = (uint32_t)(s->dst_end - s->dst);
if(copy_size > dst_space) {
copy_size = dst_space;
}
memcpy(s->dst, s->src, copy_size);
s->src += copy_size;
s->dst += copy_size;
s->uncompressed_block_state.n_raw_bytes -= copy_size;
break;
case LZFSE_COMPRESSEDV1_BLOCK_MAGIC:
case LZFSE_COMPRESSEDV2_BLOCK_MAGIC:
if(s->src_end <= s->src || s->compressed_lzfse_block_state.n_lmd_payload_bytes > (size_t)(s->src_end - s->src) || !lzfse_decode_lmd(s)) {
return false;
}
s->block_magic = LZFSE_NO_BLOCK_MAGIC;
s->src += s->compressed_lzfse_block_state.n_lmd_payload_bytes;
break;
default:
return false;
}
}
return true;
}
size_t
lzfse_decode_scratch_size(void) {
return sizeof(lzfse_decoder_state);
}
static size_t
lzfse_decode_buffer_with_scratch(uint8_t *dst_buffer, size_t dst_size, const uint8_t *src_buffer, size_t src_size, void *scratch_buffer) {
lzfse_decoder_state *s = scratch_buffer;
memset(s, '\0', sizeof(*s));
s->src = src_buffer;
s->src_begin = src_buffer;
s->src_end = s->src + src_size;
s->dst = dst_buffer;
s->dst_begin = dst_buffer;
s->dst_end = dst_buffer + dst_size;
return lzfse_decode(s) ? (size_t)(s->dst - dst_buffer) : 0;
}
size_t
lzfse_decode_buffer(uint8_t *dst_buffer, size_t dst_size, const uint8_t *src_buffer, size_t src_size, void *scratch_buffer) {
bool has_malloc = false;
size_t ret;
if(scratch_buffer == NULL) {
if((scratch_buffer = malloc(lzfse_decode_scratch_size())) == NULL) {
return 0;
}
has_malloc = true;
}
ret = lzfse_decode_buffer_with_scratch(dst_buffer, dst_size, src_buffer, src_size, scratch_buffer);
if(has_malloc) {
free(scratch_buffer);
}
return ret;
}