-
Notifications
You must be signed in to change notification settings - Fork 2
/
tabu_search.py
107 lines (87 loc) · 3.42 KB
/
tabu_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import time
import argparse
from libs.solver import TabuSearchCOPS
from libs.grafo import COPS
def receive_data():
# Creating an ArgumentParser object
parser = argparse.ArgumentParser(description='execution arguments')
# Adding named arguments
parser.add_argument('--path', help='address of the file you want to run')
parser.add_argument('--save_img', help='True or False if you need to save the image result or not, DEFAULT=True')
# Add more named arguments as needed
# Parsing the arguments received
args = parser.parse_args()
return args
def spreadsheet_header(results_file):
# write the spreadsheet header
if os.path.exists(results_file):
with open(results_file, 'r') as file:
# read the file
content = file.read()
# check if the content is empty
if not content:
with open(results_file, 'a') as file:
file.write(
f"name_problem;num_vertices;num_subgroups;num_clusters;time;profit;distance;route;subgroups_visited;method")
else:
with open(results_file, 'a') as file:
file.write(
f"name_problem;num_vertices;num_subgroups;num_clusters;time;profit;distance;route;subgroups_visited;method")
def main(dir, problem, results_file, save_img):
f = open(results_file, "a")
""" Read the dataset """
dataset = fr"{dir}\{problem}.cops"
cops = COPS()
cops.read_data(dataset)
print("------TabuSearchCOPS-------")
t1 = time.time()
tbs = TabuSearchCOPS(cops)
solution = tbs.main()
tempoExec = time.time() - t1
print("Runtime: {} seconds".format(tempoExec))
print(f"Runtime: {time.strftime('%H:%M:%S', time.gmtime(tempoExec))}")
print("------ Final Solution -------")
print("solution Tabu", solution)
legend = ["r"]
img_path = fr"{dir}/img"
if not os.path.exists(img_path):
# Create a new directory because it does not exist
os.makedirs(img_path)
img_saved = fr"{img_path}/{problem}"
cops.draw(path=solution["route"], legend=legend, fill_cluster=True, fill_set=True, name=img_saved, save_img=save_img)
f.write(
f"\n{problem};"
f"{len(cops.list_vertex) - 1};"
f"{cops.n_subgroups - 1};"
f"{len(cops.list_clusters) - 1};"
f"{str(round(tempoExec, 3)).replace('.', ',')};"
f"{str(solution['profit']).replace('.', ',')};"
f"{str(round(solution['distance'], 2)).replace('.', ',')};"
f"{str(solution['route']).replace(',', ' ')};"
f"{str(solution['subgroups_visited']).replace(',', ' ')};"
f"COPS-TABU")
f.close()
if __name__ == '__main__':
# standart problem
dir = fr"{os.getcwd()}\datasets"
problem = "example_likeCOP"
# Getting parsed problem
args = receive_data()
if args.path:
dir = os.path.dirname(args.path)
problem = os.path.basename(args.path).split('.')[0]
results_path = fr"{dir}\results"
# Getting argument to understand if its necessary to save img into img path
save_img = True # default true
if args.save_img == 'False':
save_img = False
# result file
if not os.path.exists(results_path):
os.makedirs(results_path)
results_file = fr"{results_path}\{problem}.csv"
# write spreadsheet header
spreadsheet_header(results_file)
# call main
main(dir, problem, results_file, save_img)
print("THE PROCESS IS FINISHED")