-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_regression.py
170 lines (106 loc) · 3.62 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import matplotlib.pyplot as plt
import re
import math
from pandas import read_csv
from sklearn.model_selection import train_test_split
def getdata(data):
features=[]
targets=[]
file=open(data)
for line in file:
lines=[float(j) for j in re.findall(r'[+\d.\d]+',line)]
#lines.pop(0)
#lines.insert(0,1)
targets.append(lines.pop())
features.append(lines)
features=np.array(features)
targets=np.array(targets)
X_train,X_test,Y_train,Y_test=train_test_split(features,targets,test_size=0.1,random_state=1)
print(X_train.shape[1])
return X_train,X_test,Y_train,Y_test
def Gradient_descent(trainset,parameters,target):
alp=0.00000001
l=0.00001
parameters[0]=parameters[0]-(alp*(np.sum((trainset.dot(parameters)-target))))/(2*len(trainset))
for i in range(1,len(parameters)):
parameters[i]=(parameters[i]*(1-((alp*l)/len(trainset))))-(alp*(np.sum((trainset.T).dot((trainset.dot(parameters)-target)))))/(2*len(trainset))
#parameters[1:]=(parameters[1:]
print(parameters)
return parameters
def normal(trainset,p,target):
l=1000
a=len(trainset[1])
z=np.zeros((a,a),int)
np.fill_diagonal(z,1)
z[0,0]=0
k=z*l
t1=((np.linalg.inv((trainset.T).dot(trainset)-k.T)).dot(trainset.T)).dot(target)
return t1
def cost_function(parameters,trainset,target):
l=0.00001
cost=((np.sum((trainset.dot(parameters)-target))**2)+(np.sum(l*parameters[1:]**2)))/(2*len(trainset))
return cost
def plotdata(cost,k):
x=range(k)
y=cost
plt.plot(x,y)
plt.show()
def plot(t,tar,p):
x=[]
t=t.tolist()
y=tar.tolist()
for i in t:
x.append(i[1])
plt.scatter(x,y)
plt.plot(t,p)
plt.show()
def predict(new_values,parameters,fuck):
hx=new_values.dot(parameters)
return hx
def cal_error(b,trainset,target):
hx=abs(trainset.dot(b)-target)
y=np.mean(hx)
print(y)
return y
#hx=hx.tolist()
#print(hx) '''
def main():
trainset,testset,target,pre_target=getdata('C:/Users/venu/Desktop/ml/datasets/work.txt.txt')
b=[]
for i in range(len(trainset[1])):
i=[0]
b.append(i)
b=np.array(b)
a=normal(trainset,b,target)
cost=cost_function(a,trainset,target)
h=predict(trainset,a,target)
plot(trainset,target,h)
k=[]
x=1
for j in range(x):
b=Gradient_descent(trainset,b,target)
cost=cost_function(b,trainset,target)
k.append(cost)
h=predict(trainset,b,target)
#plotdata(k,x)
cal_error(b,trainset,target)
values=int(input('how many values you want to predict:\n'))
s=[]
print("enter the values to predict:")
for m in range(values):
m=[]
area=float(input())
m.append(1)
m.append(area)
s.append(m)
s=np.array(s)
print('hey you got it...!')
print(predict(s,b))
predicted=predict(testset,b,pre_target)
s=abs(predicted-pre_target)
y=np.mean(s)
print(y)
for i in range(len(testset)):
print(predicted[i],pre_target[i]
main()