-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2chap9.tex
675 lines (666 loc) · 39 KB
/
2chap9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
\chapter{Yukawa Theory: Interacting Spinor and Scalar Fields}
In the previous chapters we have described the Free Dirac Field. We arrived at it from the U(1) invariant Lagrangian for two Weyl spinors, we quantized it, solved its equations of motion in terms of a mode expansion and extracted the creation and annihilation operators. Now we focus on interacting theory of the Dirac Field. We construct its LSZ formula to calculate scattering amplitudes, and find the Dirac Field Propagator and Path Integral to calculate correlation functions. At last, we consider Yukawa theory: the theory of interactions between Dirac Fields and scalar fields.
\section{LSZ reduction formula for fermions}
We consider one-particle states
\begin{equation}
\begin{split}
\ket{p,s,+}&=b^\dagger_s(\vb{p})\ket{0}\\
\ket{p,s,-}&=d^\dagger_s(\vb{p})\ket{0}
\end{split}
\end{equation}
where the label $\pm$ in the state kets refers to their U(1) charge eigenvalue : $b$-type particles are electrons with $+1$ U(1) charge and $d$-type are positrons with $-1$ U(1) charge. We consider the Lorentz invariant normalization of one-particle states
\begin{equation}
\braket{p,s,q}{p^\prime,s^\prime,q^\prime}=(2\pi)^32\omega\delta^3(\vb{p}-\vb{p}^\prime)\delta_{ss^\prime}\delta_{qq^\prime}
\end{equation}
and the mass-shell relation $\omega=\sqrt{\vb{p}^2+m^2}$. We introduce wave-packet creation operators, such as
\begin{equation}
b^\dagger_1\equiv\int\dd^3 p\,ḱ f_1(\vb{p})b^\dagger_{s_1}(\vb{p})
\end{equation}
creating a particle (electron) with spin $s_1$ spread around 3-momentum $\vb{p}_1$ with a gaussian envelope $f_1(\vb{p})\propto\exp[-(\vb{p}-\vb{p}_1)^2/4\sigma^2]$. The initial state with two particles reads
\begin{equation}
\ket{i}=b_1^\dagger b_2^\dagger\ket{0}.
\end{equation}
As time goes by, the packets spread and separate. In the infinite past, they correspond to widely separated particle states. As usual, these are considerations in free theory. In the interacting theory, creation operators pick up time dependence, but as long as the field obeys certain conditions, we can take
\begin{equation}
\ket{i}=\lim _{t\to-\infty}b_1^\dagger(t) b_2^\dagger(t)\ket{0}
\end{equation}
\begin{equation}
\ket{f}=\lim _{t\to\infty}b_{1^\prime}^\dagger(t) b_{2^\prime}^\dagger(t)\ket{0}
\end{equation}
as initial and final two-particle states, and consder the amplitude $\braket{f}{i}$ for scattering.
With appropriate normalization of $f_i(\vb{p})$ we can make $\braket{f}=\braket{i}=1$. To get the amplitude $\braket{f}{i}=\vev{\,b_{2^\prime}(+\infty)b_{1^\prime}(+\infty)b_1^\dagger(-\infty)b_2^\dagger(-\infty)}$ we consider, as we did for the scalar field, the difference
\begin{equation}
\begin{aligned}
b_1^\dagger(-\infty)-b_1^\dagger(+\infty)=&-\int_{-\infty}^{+\infty}\dd t\,\partial_0b_1^\dagger(t)\\
&=-\int\dd^3 p\, f_1(\vb{p})\int \dd^4 x\,\partial_0\qty(e^{ipx}\Bar{\Psi}(x)\gamma^0u_{s_1}(\vb{p}))\\
&=-\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(\gamma^0\overleftarrow{\partial}_0-i\overbrace{\gamma^0p^0}^{\gamma^jp^j+m})u_{s_1}(\vb{p})e^{ipx}\\
&=-\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(\gamma^0\overleftarrow{\partial}_0-\gamma^j\overrightarrow{\partial}_j-im)u_{s_1}(\vb{p})e^{ipx}\\
&=-\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(\gamma^0\overleftarrow{\partial}_0+\gamma^j\overleftarrow{\partial}_j-im)u_{s_1}(\vb{p})e^{ipx}\\
&=i\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(i\gamma^0\overleftarrow{\partial}_0+i\gamma^j\overleftarrow{\partial}_j+m)u_{s_1}(\vb{p})e^{ipx}\\
&=i\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(+i\overleftarrow{\slashed{\partial}}+m)u_{s_1}(\vb{p})e^{ipx}\\
\end{aligned}
\label{b1_spinor}
\end{equation}
The first line is the fundamental theorem of calculus; the second comes from (\ref{bdagger_psi}), expressing the creation operator in terms of the Dirac field; the third comes from distributing the derivative, and the over-brace expression indicates that the action of $\gamma^0p^0$ on $u_{s_1}$ equals that of $\gamma^jp^j+m$ on it, according to (\ref{uv}). The fourth line comes from replacing $ip^j$ for the derivative to act on $e^{ipx}$. The fifth comes from realizing that $\Bar{\Psi}\gamma^j\partial_je^{ipx}=\gamma^j\partial_j(\Bar{\Psi} e^{ipx})-(\gamma^j\partial_j\Bar{\Psi})e^{ipx}$ and that the first term is a surface term that can be made to vanish as long as $f_1(\vb{p})$ goes to zero fast enough (this is the role of $f_1(\vb{p})$ in our considerations). The sixth equality comes from factoring out the $i$ and the seventh from recognizing the slashed derivative. Hermitian conjugation gives
\begin{equation}
b_1(+\infty)-b_1(-\infty)=i\int\dd^3p\,f_1(\vb{p})\int\dd^4x\,e^{-ipx}\bar{u}_{s_1}(\vb{p})(-i\slashed{\partial}+m)\Psi(x),
\label{b1}
\end{equation}
And similar considerations lead to
\begin{equation}
d^\dagger_1(+\infty)-d^\dagger_1(-\infty)=i\int\dd^3p\,f_1(\vb{p})\int\dd^4x\,e^{ipx}\bar{v}_{s_1}(\vb{p})(-i\slashed{\partial}+m)\Psi(x),
\label{d1dagger}
\end{equation}
\begin{equation}
d_1(+\infty)-d_1(-\infty)=-i\int\dd^3 p\, f_1(\vb{p})\int \dd^4x\,\Bar{\Psi}(x)(+i\overleftarrow{\slashed{\partial}}+m)v_{s_1}(\vb{p})e^{-ipx}.
\label{d1}
\end{equation}
Back to the amplitude, we insert a time-ordering symbol
\begin{equation}
\braket{f}{i}=\vev{\text{T}\,b_{2^\prime}(+\infty)b_{1^\prime}(+\infty)b_1^\dagger(-\infty)b_2^\dagger(-\infty)}
\label{fi911}
\end{equation}
and take the limit $\sigma\to0$, which makes $f_1(\vb{p})\to\delta^3(\vb{p}-\vb{p}_1)$. Distributing the products using what we found in (\ref{b1_spinor}) and (\ref{b1})
\begin{equation}
\begin{aligned}
\braket{f}{i}&=i^4\int\dd^4x_1\dd^4x_2\dd^4x_{1^\prime}\dd^4x_{2^\prime}e^{ip_1x_{1}}e^{ip_2x_{2}}e^{-ip^\prime_1x_{1^\prime}}e^{-ip^\prime_2x_{2^\prime}}\\
&\qquad\times[\bar{u}_{s_1^\prime}(\vb{p}_1^\prime)(-i\slashed{\partial}_{{1^\prime}}+m)]_{\alpha_1^\prime}[\bar{u}_{s_2^\prime}(\vb{p}_2^\prime)(-i\slashed{\partial}_{{2^\prime}}+m)]_{\alpha_2^\prime}\\
&\qquad\times\vev{\text{T}\,\Psi_{\alpha^\prime_2}(x_{2^\prime})\Psi_{\alpha^\prime_1}(x_{1^\prime})\bar{\Psi}_{\alpha_1}(x_1)\bar{\Psi}_{\alpha_2}(x_2)}
\\&\qquad\times[(i\overleftarrow{\slashed{\partial}}_{1}+m)u_{s_1}(\vb{p}_1)]_{\alpha_1}[(i\overleftarrow{\slashed{\partial}}_{2}+m)u_{s_2}(\vb{p}_2)]_{\alpha_2}
\end{aligned}
\end{equation}
since the time-ordering moves annihilation operators to the right, where they annihilate $\ket{0}$ and creation operators to the left, where they annihilate $\bra{0}$.
This is the amplitude for electron-electron scattering, since both the initial and final states consist of electron states. We can consider different processes by constructing different particle states. Substitution of eqs (\ref{b1_spinor})-(\ref{d1}) into $\braket{f}{i}$, distribution of products and the effect of time-ordering can be obtained with the direct replacements of creation and annihilation operators into $\braket{f}{i}$ in (\ref{fi911})
\begin{equation}
b^\dagger_s(\vb{p})_{\text{in}}\to i\int\dd^4x\,\bar{\Psi}(x)(i\overleftarrow{\slashed{\partial}}+m)u_s(\vb{p})e^{ipx}
\end{equation}
\begin{equation}
b_s(\vb{p})_{\text{out}}\to i\int\dd^4x\,e^{-ipx}\bar{u}_s(\vb{p})(-i{\slashed{\partial}}+m)\Psi(x)
\end{equation}
\begin{equation}
d^\dagger_s(\vb{p})_{\text{in}}\to -i\int\dd^4x\,e^{ipx}\bar{v}_s(\vb{p})(-i{\slashed{\partial}}+m)\Psi(x)
\end{equation}
\begin{equation}
d_s(\vb{p})_{\text{out}}\to -i\int\dd^4x\,\bar{\Psi}(x)(i\overleftarrow{\slashed{\partial}}+m)v_s(\vb{p})e^{-ipx}
\end{equation}
where ``in" and ``out" refer to $t=-\infty$ and $t=+\infty$ respectively.\\
Now, as for the requirements for validity of the previous considerations, we need the field in the interacting theory to work comparably to how it does in the free theory. More specifically, we need it to satisfy
\begin{equation}
\vev{\Psi(x)}=0
\end{equation}
which states Lorentz invariance, since, considering the commutator
\begin{equation}
\comm{\Psi(0)}{M^{\mu\nu}}=S^{\mu\nu}\Psi(0).
\end{equation}
the Lorentz invariant vacuum states satisfy $M^{\mu\nu}\ket{0}=0$, so the former expression tells that $S^{\mu\nu}\vev{\Psi(0)}=0$. From translation invariance, we need $\vev{\Psi(x)}=0$ so everthing is consistent with Lorentz invariance. Besides this condition, we also need
\begin{equation}
\bra{p,s,+}\Psi(x)\ket{0}=0
\label{charge_cond1}
\end{equation}
\begin{equation}
\bra{p,s,-}\bar{\Psi}(x)\ket{0}=0.
\label{charge_cond2}
\end{equation}
which comes from the fact that
\begin{equation}
\comm{\Psi(x)}{Q}=+\Psi(x)
\label{charge_condition1}
\end{equation}
\begin{equation}
\comm{Q}{\bar{\Psi}(x)}=+\bar{\Psi}(x)
\label{charge_condition2}
\end{equation}
which can be verified by recalling that $Q=\int\dd^3 x \bar{\Psi}\gamma^0\Psi$ and by using the field anti-commutation relations (\ref{anticomm_dirac}). Taking the matrix element by multiplying by $\bra{p,s,\pm}$ on the left and by $\ket{0}$ on the right on both sides of (\ref{charge_condition1}) and (\ref{charge_condition2}), bearing in mind that $Q\ket{0}=0$, leads to (\ref{charge_cond1}) and (\ref{charge_cond2}), which state charge conservation. At last, considering the mode expansion (\ref{dirac_mode_expansion}) and the anti-commutation relations (\ref{anticomm_dirac}), we also need
\begin{equation}
\bra{p,s,-}\Psi(x)\ket{0}=v_s(\vb{p})e^{-ipx}
\end{equation}
\begin{equation}
\bra{p,s,+}\bar{\Psi}(x)\ket{0}=\bar{u}_s(\vb{p})e^{-ipx}.
\end{equation}
To meet all these requirements, we can re-scale and shift the Dirac field, so that its equations of motion follow effectively from a rescaled Lagrangian, as, for instance,
\begin{equation}
\mathcal{L}=iZ\bar{\Psi}\slashed{\partial}\Psi-Z_mm\bar{\Psi}\Psi-\frac{1}{4}Z_gg(\bar{\Psi}\Psi)^2.
\end{equation}
As usual, $Z_mm$ is fixed to correspond to the particle's mass, $Z_g g$ fixed to reproduce a particular scattering cross-section, and $Z$ is fixed by making the field consistent with the conditions we just highlighted.
\section{Free propagator for the Dirac field}
As in the scalar field case, we are interested in the Dirac differential operator Green's function, as a first step toward building more elaborate correlation functions and also to be able to evaluate the free Dirac Field functional integral. We consider Dirac Fields $\Psi(x)$ and $\bar{\Psi}(y)$ and their mode expansion. We define the \textit{Feynman Propagator} for the Dirac Field as
\begin{equation}
S_{\alpha\beta}(x-y)\equiv i\vev{\text{T}\,\Psi_\alpha(x)\bar{\Psi}_\beta(y)}
\end{equation}
Where $\text{T}$ stands for the \textit{time ordering symbol}, which implements the time ordering of the fields according to
\begin{equation}
\text{T}\Psi_\alpha(x)\bar{\Psi}_\beta(y)=\theta(x^0-y^0)\Psi_\alpha(x)\bar{\Psi}_\beta(y)-\theta(y^0-x^0)\bar{\Psi}_\beta(y)\Psi_\alpha(x)
\end{equation}
where $\theta(x)$ is the unit step function, defined to be $0$ for $x\leq0$ and $1$ for $x>0$. Note that the minus sign in the second term comes in due to the anticommutation of the fields. Evaluating the vacuum expected value of $\vev{\Psi_\alpha(x)\bar{\Psi}_\beta(y)}$ using the mode expansion (\ref{dirac_mode_expansion}), the first anti-commutation relation of (\ref{coef_anticomm}) and the first relation of (\ref{spin_sum}) for spin sums of products of $u_s(\vb{p)}$ and $\bar{u}_s(\vb{p})$ gives
\begin{equation}
\vev{\Psi_\alpha(x)\bar{\Psi}_\beta(y)}=\int\widetilde{\dd p}\,e^{ip(x-y)}(-\slashed{p}+m)_{\alpha\beta}.
\end{equation}
Similarly, using barred (\ref{dirac_mode_expansion}), the second anti-commutation relation of \ref{coef_anticomm}) and the second of (\ref{spin_sum}) for spin sums gives
\begin{equation}
\vev{\bar{\Psi}_\beta(y)\Psi_\alpha(x)}=\int\widetilde{\dd p}\,e^{-ip(x-y)}(-\slashed{p}-m)_{\alpha\beta}.
\end{equation}
Noting that, for a polynomial function of $p$, say $f(p)$, evaluation of the time integral in the following Fourier transform gives
\begin{equation}
\begin{aligned}
\int\frac{\dd^4p}{(2\pi)^4}\frac{e^{ip(x-y)}f(p)}{p^2+m^2-i\epsilon}&=i\theta(x^0-y^0)\int\widetilde{\dd p}\,e^{ip(x-y)}f(p)\\&\qquad+ i \theta(y^0-x^0)\int\widetilde{\dd p}\,e^{-ip(x-y)}f(-p),
\end{aligned}
\end{equation}
then
\begin{equation}
\vev{\text{T}\Psi_\alpha(x)\bar{\Psi}_\beta(y)}=\frac{1}{i}\int\frac{\dd^4 p}{(2\pi)^4}\frac{e^{ip(x-y)}(-\slashed{p}+m)_{\alpha\beta}}{p^2+m^2-i\epsilon}.
\end{equation}
So we conclude that the Feynman propagator for the Dirac Field is
\begin{equation}
S_{\alpha\beta}(x-y)=\int\frac{\dd^4 p}{(2\pi)^4}\frac{e^{ip(x-y)}(-\slashed{p}+m)_{\alpha\beta}}{p^2+m^2-i\epsilon},
\label{dirac_free_prop}
\end{equation}
which is the Green's function for the Dirac operator
\begin{equation}
\begin{aligned}
(-i\slashed{\partial}_x+m)_{\alpha\beta}S_{\beta\gamma}(x-y)&=\int\frac{\dd^4 p}{(2\pi)^4}\frac{e^{ip(x-y)}(\slashed{p}+m)_{\alpha\beta}(-\slashed{p}+m)_{\beta\gamma}}{p^2+m^2-i\epsilon}\\
&=\int\frac{\dd^4 p}{(2\pi)^4}\frac{e^{ip(x-y)}(p^2+m^2)\delta_{\alpha\gamma}}{p^2+m^2-i\epsilon}\\
&\underbrace{=}_{\epsilon\to0}\quad\delta^4(x-y)\delta_{\alpha\gamma}
\end{aligned}
\end{equation}
similarly, we have
\begin{equation}
S_{\alpha\beta}(x-y)(+i\overleftarrow{\slashed{\partial}}_y+m)_{\beta\gamma}=\delta^4(x-y)\delta_{\alpha\gamma}.
\end{equation}
At last we note that
\begin{equation}
\vev{\text{T}\Psi_\alpha(x)\Psi_\beta(y)}=0
\end{equation}
\begin{equation}
\vev{\text{T}\bar{\Psi}_\alpha(x)\bar{\Psi}_\beta(y)}=0
\end{equation}
since the fields anticomute.
\section{Path integral for the Dirac field}
To study the functional integral for the Dirac field, we need to define anti-commuting sources $\eta(x)$ and $\bar{\eta}(x)$ so that the following are satisfied
\begin{equation}
\fdv{\eta(x)}\int\dd^4 y \qty[\bar{\eta}(y)\Psi(y)+\bar{\Psi}(y)\eta(y)]=-\bar{\Psi}(x),
\label{anticom_source}
\end{equation}
\begin{equation}
\fdv{\bar{\eta}(x)}\int\dd^4 y \qty[\bar{\eta}(y)\Psi(y)+\bar{\Psi}(y)\eta(y)]={\Psi}(x).
\end{equation}
This way, we consider the free Lagrangian for the Field
\begin{equation*}
\mathcal{L}_0=-\bar{\Psi}(-i\slashed{\partial}+m)\Psi
\end{equation*}
and add source terms to the action in the functional integral
\begin{equation}
Z_0(\bar{\eta},\eta)=\int\mathcal{D}\Psi\mathcal{D}\bar{\Psi}\,\exp[i\int\dd^4x(\mathcal{L}_0+\bar{\eta}\Psi+\bar{\Psi}\eta)].
\end{equation}
In analogy with the complex scalar field, we expect this integral to be expressed in terms of the free propagator
\begin{equation}
Z_0(\bar{\eta},\eta)=\exp[i\int\dd^4x\,\dd^4 y\,\bar{\eta}(x)S(x-y)\eta(y)].
\label{Z_0_dirac}
\end{equation}
Where $S(x-y)$ is given by (\ref{dirac_free_prop}) (we have omitted the bispinor indices). The choice of normalization is $Z(0,0)=1$, since the vacuum-vacuum amplitude must remain unchanged in the absence of sources.\\
Still in analogy with the complex scalar field, we calculate correlation functions with
\begin{equation}
\vev{\text{T}\Psi_{\alpha_1}(x_1)\dots\bar{\Psi}_{\beta_1}(y_1)}\dots\equiv\frac{1}{i}\fdv{\bar{\eta}_{\alpha_1}(x_1)}\dots i\fdv{\eta_{\beta_1}(y_1)}\dots Z_0(\bar{\eta},\eta)\eval_{\eta=\bar{\eta}=0}
\end{equation}
Notice the factor $i$ instead of $\frac{1}{i}$ accompanying derivatives with respect to $\eta$ This is because of the anti-commutativity of sources, as (\ref{anticom_source}) shows.
\section{Yukawa theory}
In interacting field theory, we have
\begin{equation}
Z(\bar{\eta},\eta)\propto\exp[i\int\dd^4x\,\mathcal{L}_1\qty(i\fdv{\eta(x)},\frac{1}{i}\fdv{\bar{\eta}(x)})]Z_0(\bar{\eta},\eta)
\end{equation}
where $\mathcal{L}_1$ is the interaction Lagrangian. We will consider now \textit{Yukawa Theory}: the theory of interaction between the Dirac field and a scalar field. This is the theory of electrons and positrons interacting with scalar particles. The interaction Lagrangian is
\begin{equation}
\mathcal{L}_1=g\phi\bar{\Psi}\Psi
\label{yukawa_lagrangian}
\end{equation}
where the Dirac field corresponds to fermions with mass $m$ and the scalar field corresponds to scalars with mass $M$ (we are considering a \textit{real} scalar field). $g$ is a coupling constant. Notice that this Lagrangian is U(1) invariant, so its addition to the free Lagrangian does not break the U(1) invariance the free theory of fermions presents. This means Yukawa theory preserves the U(1) charge and thus the number of electrons minus the number of positrons.\\
Considering the interaction Lagrangian (\ref{yukawa_lagrangian}), the functional integral reads
\begin{equation}
Z(\bar{\eta}, \eta, J) \propto \exp \left[i g \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)\left(i \frac{\delta}{\delta \eta_{\alpha}(x)}\right)\left(\frac{1}{i} \frac{\delta}{\delta \bar{\eta}_{\alpha}(x)}\right)\right] Z_{0}(\bar{\eta}, \eta, J)
\label{yukawa_Z}
\end{equation}
where the $Z_0$ reads
\begin{equation}
\begin{aligned}
Z_{0}(\bar{\eta}, \eta, J)&= \exp \left[i \int \dd^{4} x\, \dd^{4} y\, \bar{\eta}(x) S(x-y) \eta(y)\right] \\ &\qquad\times
\exp \left[\frac{i}{2} \int \dd^{4} x\, \dd^{4} y\, J(x) \Delta(x-y) J(y)\right].
\end{aligned}
\end{equation}
Series expansion of (\ref{yukawa_Z}) and introduction of Feynman Diagrams again allows us to write
\begin{equation}
Z(\bar{\eta},\eta,J)=\exp iW(\bar{\eta},\eta,J)
\end{equation}
where $iW(\bar{\eta},\eta,J)$ is the sum of connected diagrams with sources, ignoring tadpoles. \\
In these diagrams, we use dashed lines for scalar propagators $\frac{1}{i}\Delta(x-y)$ and solid lines for fermion propagators $\frac{1}{i}S(x-y)$. The vertex is where two fermion propagators and one scalar propagator meet and has the corresponding factor of $ig\int\dd^4x$. Sources are the blobs at the end of lines and are identified as scalar sources if they rest at the end of scalar lines or as fermion sources if they rest at the end of fermion lines. Since the fermion field accommodates charges we need an arrow rule, just as in the complex scalar field case. Arrows pointing away from the source indicate that such source corresponds to $i\int\dd^4 x\,\eta(x)$ while arrows pointing toward a source indicate that such source correspond to $i\int\dd^4x\,\bar{\eta}(x)$. To ensure charge conservation, each vertex must have one arrow pointing toward the vertex, and one arrow pointing away from it. Some diagrams contributing up $g^2$ are shown.
\begin{figure}[h]
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- node {\midarrow} (1,0);
\fill [black] (1,0) circle (0.2 cm);
\fill [black] (0,1) circle (0.2 cm);
\draw (0,1)[densely dotted] -- (1,1);
\fill [black] (1,1) circle (0.2 cm);
\end{tikzpicture}
\caption{$S=2$}
\end{subfigure}
~
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\fill [black] (2,0) circle (0.2 cm);
\draw (1,0)[densely dotted] -- (1,-1);
\fill [black] (1,-1) circle (0.2 cm);
\end{tikzpicture}
\caption{$S=1$}
\end{subfigure}
~
\begin{subfigure}[]{0.3\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (2,0) -- node {\midarrow} (3,0);
\fill [black] (2,-1) circle (0.2 cm);
\draw (2,0)[densely dotted] -- (2,-1);
\fill [black] (3,0) circle (0.2 cm);
\draw (1,0)[densely dotted] -- (1,-1);
\fill [black] (1,-1) circle (0.2 cm);
\end{tikzpicture}
\caption{$S=1$}
\end{subfigure}
~
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\fill [black] (2,0) circle (0.2 cm);
\draw (1,0)[densely dotted] -- (1,-1);
\fill [black] (0,0) circle (0.2 cm);
\draw (0,-1) -- node {\midarrow} (1,-1);
\draw (1,-1) -- node {\midarrow} (2,-1);
\fill [black] (2,-1) circle (0.2 cm);
\fill [black] (0,-1) circle (0.2 cm);
\end{tikzpicture}
\caption{$S=2$}
\end{subfigure}
\caption{ Diagrams contributing to (\ref{yukawa_Z})}
\label{yukawa_diag}
\end{figure}
\subsection{Scattering amplitude for $e^-\phi\to e^-\phi$}
We prepare initial and final states containing an electron and a scalar, and calculate the amplitude for scattering
\begin{equation}
\braket{f}{i}=\vev{\text{T}a(\vb{k}^\prime)_{\text{out}}b_{s^\prime}(\vb{p}^\prime)_{\text{out}}b^\dagger_{s}(\vb{p})_{\text{in}}a^\dagger(\vb{k})_{\text{in}}}.
\end{equation}
To this end, we consider (\ref{b1_spinor}) and (\ref{b1}) for $b_{s^\prime}(\vb{p}^\prime)_{\text{out}}$ and $b^\dagger_{s}(\vb{p})_{\text{in}}$, and
\begin{equation}
a^\dagger(\vb{k})_{\text{in}}\to i\int\dd^4 z_1 e^{ikz_1}(-\partial^2_{z_1}+M^2)\phi(z_1)
\label{ain}
\end{equation}
\begin{equation}
a(\vb{k}^\prime)_{\text{out}}\to i\int\dd^4 z_2 e^{-ik^\prime z_2}(-\partial^2_{z_2}+M^2)\phi(z_2)
\label{aout}
\end{equation}
So that
\begin{equation}
\begin{aligned}
\braket{f}{i}&=i^4\int\dd^4z_2\,\dd^4x\,\dd^4y\,\dd^4z_1\,e^{-ik^\prime z_2}e^{-ip^\prime x}e^{ipy}e^{ikz_1}(-\partial^2_{z_1}+M^2)(-\partial^2_{z_2}+M^2)\\&\qquad\times \bar{u}_{s^\prime}(\vb{p}^\prime)(-i\slashed{\partial}_x+m)\vev{\text{T}\phi(z_2)\Psi(x)\bar{\Psi}(y)\phi(z_1)}(i\overleftarrow{\slashed{\partial}}_y+m)u_s(\vb{p}).
\end{aligned}
\end{equation}
The fully connected correlation function for such scattering is the sum of connected diagrams with two scalar sources and two fermion sources (Figure \ref{yukawa_diag}-(c)), but with these sources removed
\begin{equation}
\begin{aligned}
\vev{\text{T}\Psi(x)\bar{\Psi}(y)\phi(z_1)\phi(z_2)}&=\frac{1}{i}\fdv{\bar{\eta}(x)}i\fdv{\eta(y)}\frac{1}{i}\fdv{J(z_1)}\frac{1}{i}\fdv{J(z_2)}iW(\bar{\eta},\eta,J)\eval_{\bar{\eta}=\eta=J=0}\\&=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (2,0) -- node {\midarrow} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$y$};
\node at (1,0.2){$w_1$};
\node at (2,0.2){$w_2$};
\node at (3.2,0.2){$x$};
\node at (1,-1.2){$z_1$};
\node at (2,-1.2){$z_2$};
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (2,0) -- node {\midarrow} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$y$};
\node at (1,0.2){$w_1$};
\node at (2,0.2){$w_2$};
\node at (3.2,0.2){$x$};
\node at (1,-1.2){$z_2$};
\node at (2,-1.2){$z_1$};
\end{tikzpicture}
\end{gathered}\\
&=\qty(\frac{1}{i})^5(ig)^2\int\dd^4w_1\,\dd^4w_2\,\\
&\qquad\qquad\qquad\times S(x-w_2)S(w_2-w_1)S(w_1-y)\\&\qquad\qquad\qquad\times\Delta(z_1-w_1)\Delta(z_2-w_2)\\&\qquad\qquad\qquad+(z_1 \leftrightarrow z_2)+\order{g^4}.
\end{aligned}
\end{equation}
Where the scalar fields can be rearranged because they commute with the spinor fields.
Plugging into the LSZ gives
\begin{equation}
\braket{f}{i}=(2\pi)^4\delta^4(p+k-p^\prime-k^\prime)ig^2\,\bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\frac{-\slashed{p}-\slashed{k}+m}{-s+m^{2}}+\frac{- \slashed{p}+\slashed{k}^{\prime}+m}{-u+m^{2}}\right] u_{s}(\mathbf{p}),
\end{equation}
where $s=-(p+k)^2$ and $u=-(p-k^\prime)^2$. The $i\epsilon$s were dropped since we have no risk of getting a pole for physically significant values of $s$ and $u$. This result highlights the scattering amplitude for $e^-\phi\to e^-\phi$
\begin{equation}
i\mathcal{T}_{e^-\phi\to e^-\phi}=ig^2\bar{u}_{s^{\prime}}\left(\mathbf{p}^{\prime}\right)\left[\frac{-\slashed{p}-\slashed{k}+m}{-s+m^{2}}+\frac{- \slashed{p}+\slashed{k}^{\prime}+m}{-u+m^{2}}\right] u_{s}(\mathbf{p}).
\label{electron_scalar}
\end{equation}
\subsection{Scattering amplitude for $e^+\phi\to e^+\phi$}
For this process, we need to calculate the amplitude
\begin{equation}
\braket{f}{i}=\vev{\text{T}\,a(\vb{k}^\prime)_{\text{out}}d_{s^\prime}(\vb{p}^\prime)_{\text{out}}d^\dagger_{s}(\vb{p})_{\text{in}}a^\dagger(\vb{k})_{\text{in}}}.
\end{equation}
We use (\ref{d1dagger}) and (\ref{d1}) for $d^\dagger_s(\vb{p})_{\text{in}}$ and $d_{s^\prime}(\vb{p}^\prime)_{\text{out}}$ and (\ref{ain}) and (\ref{aout}) for $a^\dagger(\vb{k})_{\text{in}}$ and $a(\vb{k}^\prime)_{\text{out}}$. This gives us
\begin{equation}
\begin{aligned}
\braket{f}{i}&=i^4\int\dd^4z_2\dd^4x\dd^4y\dd^4z_1e^{-ik^\prime z_2}e^{-ip^\prime y}e^{ipx}e^{ikz_1}(-\partial^2_{z_1}+M^2)(-\partial^2_{z_2}+M^2)\\&\times \bar{v}_{s}(\vb{p})(-i\slashed{\partial}_x+m)\vev{\text{T}\phi(z_2)\bar{\Psi}(y)\Psi(x)\phi(z_1)}(i\overleftarrow{\slashed{\partial}}_y+m)v_{s^\prime}(\vb{p}^\prime)
\end{aligned}
\end{equation}
The fully connected correlation function ends up being equal to that of the previous process, but with an overall minus sign due to the exchange of spinor fields. This has no physical effect since we will be interested in squares of absolute values of $\braket{f}{i}$
\begin{equation}
\begin{aligned}
\vev{\text{T}\bar{\Psi}(y)\Psi(x)\phi(z_1)\phi(z_2)}&=i\fdv{\eta(y)}\frac{1}{i}\fdv{\bar{\eta}(x)}\frac{1}{i}\fdv{J(z_1)}\frac{1}{i}\fdv{J(z_2)}iW(\bar{\eta},\eta,J)\eval_{\bar{\eta}=\eta=J=0}\\
&=-\qty(\frac{1}{i})^5(ig)^2\int\dd^4w_1\,\dd^4w_2\,\\
&\qquad\qquad\qquad\times S(x-w_2)S(w_2-w_1)S(w_1-y)\\&\qquad\qquad\qquad\times\Delta(z_1-w_1)\Delta(z_2-w_2)\\&\qquad\qquad\qquad+(z_1 \leftrightarrow z_2)+\order{g^4}.
\end{aligned}
\end{equation}
Plugging in the LSZ gives
\begin{equation}
\braket{f}{i}=(2\pi)^4\delta^4(p+k-p^\prime-k^\prime)ig^2\bar{v}_s(\vb{p})\qty[\frac{\slashed{p}+\slashed{k}+m}{-s+m^2}+\frac{\slashed{p}-\slashed{k}^\prime+m}{-u+m^2}]v_{s^\prime}(\vb{p}^\prime)
\end{equation}
meaning we have a scattering amplitude of
\begin{equation}
i\mathcal{T}_{e^+\phi\to e^+\phi}=ig^2\bar{v}_s(\vb{p})\qty[\frac{\slashed{p}+\slashed{k}+m}{-s+m^2}+\frac{\slashed{p}-\slashed{k}^\prime+m}{-u+m^2}]v_{s^\prime}(\vb{p}^\prime)
\label{positron_scalar}
\end{equation}
These two scattering amplitudes we calculated from the LSZ and the correlation functions can be cast directly from momentum-space Feynman Diagrams.
\subsection{Feynman rules for Yukawa theory}
Below are the \textit{Feynman Rules for Yukawa Theory} to find $i\mathcal{T}$ from momentum-space diagrams
\begin{itemize}
\item Incoming electrons correspond to solid lines with arrows pointing toward the vertex and are labeled with momentum $p_i$;
\item Outgoing electrons correspond to solid lines with arrows pointing away from the vertex, and are labeled with momentum $p^\prime_i$;
\item Incoming positrons correspond to solid lines with arrows pointing away from the vertex and are labeled with momentum $-p_i$;
\item Outgoing positrons correspond to solid lines with arrows pointing toward the vertex and labeled with momentum $-p_i^\prime$
\item Incoming scalars correspond to dashed lines with arrows pointing toward the vertex and are labeled with momentum $k_i$
\item Outgoing scalars correspond to dashed lines with arrows pointing away from the vertex and are labeled with momentum $k^\prime_i$;
\item The vertex is where two solid fermion lines and one dashed scalar line meet. One fermion arrow must point toward the vertex and the other must point away from it. Scalar lines can point in either directions;
\item With these rules, draw all the topologically inequivalent diagrams-- those that cannot be transformed into others by a deformation of lines-- by joining external lines and adding internal lines if needed;
\item Think of momentum as a fluid flowing along the arrows and demand its conservation at the vertices. To each internal line, assign a 4-momentum from this conservation requirement;
\item Incoming or outgoing scalar lines translate to the factor 1;
\item Incoming electron lines translate to the factor $u_{s_i}(\vb{p}_i)$;
\item Outgoing electron lines translate to $\bar{u}_{s_i^\prime}(\vb{p}^\prime_i)$;
\item Incoming positron lines translate to $\bar{v}_{s_i}(\vb{p}_i)$;
\item Outgoing positron lines translate to $v_{s_i^\prime}(\vb{p}_i^\prime)$;
\item Vertices translate to $ig$;
\item Internal scalar lines with momentum $k$ translate to $\frac{-i}{k^2+M^2-i\epsilon}$;
\item Internal fermion lines with momentum $p$ translate to $\frac{-i(-\slashed{p}+m)}{p^2+m^2-i\epsilon}$;
\item The rule for contraction of spinor indices: locate an external fermion line corresponding either to $\bar{u}$ or $\bar{v}$; go back along that line following the arrows backwards; write the vertices and/or propagators from left-to-right as you encounter them; the last factor should be either $u$ or $v$.
\item The rule for the sign of a tree-diagram: when drawing tree-diagrams, draw all fermion lines horizontally with a fixed configuration of labels at the endpoints. Next, build the different combinations by switching labels. This will give a permutation of the right endpoints of fermion lines: even permutations give a positive overall sign to the diagram while odd permutations give it a minus sign.
\item To find $i\mathcal{T}$ translate the diagrams and sum over diagrams
\end{itemize}
To see the origin of the sign rule, consider the fully connected correlation function
\begin{equation}
\begin{aligned}
\vev{\text{T}\,\Psi(x)\bar{\Psi}(y)\Psi(z)\bar{\Psi}(w)}&=\frac{1}{i}\fdv{\bar{\eta}(x)}i\fdv{\eta(y)}\frac{1}{i}\fdv{\bar{\eta}(z)}i\fdv{\eta(w)}iW(\bar{\eta},\eta,J)\eval_{\bar{\eta}=\eta=J=0}\\
&=\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrow} (1,-1);
\draw (1,-1) -- node {\midarrow} (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$y_1$};
\node at (1,0.2){$w_1$};
\node at (2,0.2){$x_1$};
\node at (1,-1.3){$w_2$};
\node at (-0.2,-1.3){$y_2$};
\node at (2,-1.3){$x_2$};
\end{tikzpicture}
\end{gathered}-
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrow} (1,-1);
\draw (1,-1) -- node {\midarrow} (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$y_1$};
\node at (1,0.2){$w_1$};
\node at (2,0.2){$x_2$};
\node at (1,-1.3){$w_2$};
\node at (-0.2,-1.3){$y_2$};
\node at (2,-1.3){$x_1$};
\end{tikzpicture}
\end{gathered},
\end{aligned}
\end{equation}
that is, this correlation function is the sum of connected diagrams with 4 fermion sources (Figure \ref{yukawa_diag}-(d)) but with those sources removed. The symmetry factor for this diagram is $S=2$ but since the two $\eta$ derivatives and the two $\bar{\eta}$ derivatives can act on the diagram in two different ways each, we have four terms. Of these four, two of them are duplicates of the other two (those shown in the diagram), thus canceling the symmetry factor and leaving $S=1$ for the tree diagrams. The minus sign comes from the swap of the derivatives to act at the right side, justifying the sign rule.\\
With these Feynman Rules, results (\ref{electron_scalar}) and (\ref{positron_scalar}) can be represented as
\begin{equation}
i\mathcal{T}_{e^-\phi\to e^-\phi}=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (2,0) -- node {\midarrow} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (0,0.4){$p$};
\node at (1.5,0.5){$p+k$};
\node at (2.8,0.5){$p^\prime$};
\node at (0.6,-0.5){$k$};
\node at (2.4,-0.5){$k^\prime$};
\draw[-triangle 90] (1,-0.5) -- (1,-0.4);
\draw[-triangle 90] (2,-0.4) -- (2,-0.5);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (2,0) -- node {\midarrow} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (0,0.4){$p$};
\node at (1.5,0.5){$p-k^\prime$};
\node at (2.8,0.5){$p^\prime$};
\node at (0.6,-0.5){$k^\prime$};
\node at (2.4,-0.5){$k$};
\draw[-triangle 90] (2,-0.5) -- (2,-0.4);
\draw[-triangle 90] (1,-0.4) -- (1,-0.5);
\end{tikzpicture}
\end{gathered}
\end{equation}
\begin{equation}
i\mathcal{T}_{e^+\phi\to e^+\phi}=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrowleft} (1,0);
\draw (1,0) -- node {\midarrowleft} (2,0);
\draw (2,0) -- node {\midarrowleft} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (0,0.4){$-p$};
\node at (1.5,0.5){$-p-k$};
\node at (2.8,0.5){$-p^\prime$};
\node at (0.6,-0.5){$k$};
\node at (2.4,-0.5){$k^\prime$};
\draw[-triangle 90] (1,-0.5) -- (1,-0.4);
\draw[-triangle 90] (2,-0.4) -- (2,-0.5);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrowleft} (1,0);
\draw (1,0) -- node {\midarrowleft} (2,0);
\draw (2,0) -- node {\midarrowleft} (3,0);
\draw (2,0)[densely dotted] -- (2,-1);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (0,0.4){$-p$};
\node at (1.5,0.5){$-p+k^\prime$};
\node at (2.8,0.5){$-p^\prime$};
\node at (0.6,-0.5){$k^\prime$};
\node at (2.4,-0.5){$k$};
\draw[-triangle 90] (2,-0.5) -- (2,-0.4);
\draw[-triangle 90] (1,-0.4) -- (1 ,-0.5);
\end{tikzpicture}
\end{gathered}
\end{equation}
and scattering amplitudes for other processes can be easily found, as the examples below show
\begin{equation}
\begin{aligned}
i\mathcal{T}_{e^+e^-\to\phi\phi}&=\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0)[densely dotted] -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrowleft} (1,-1);
\draw (1,-1)[densely dotted] -- node {\midarrow} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0) -- (1,-1);
\node at (-0.2,0.2){$p_1$};
\node at (2,0.2){$k_1^\prime$};
\node at (2,-0.5){$p_1-k_1^\prime$};
\node at (-0.2,-1.3){$-p_2$};
\node at (2,-1.3){$k_2^\prime$};
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0)[densely dotted] -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrowleft} (1,-1);
\draw (1,-1)[densely dotted] -- node {\midarrow} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0) -- (1,-1);
\node at (-0.2,0.2){$p_1$};
\node at (2,0.2){$k_2^\prime$};
\node at (2,-0.5){$p_1-k_2^\prime$};
\node at (-0.2,-1.3){$-p_2$};
\node at (2,-1.3){$k_1^\prime$};
\end{tikzpicture}
\end{gathered}\\
&=ig^2\bar{v}_{s_2}(\vb{p}_2)\qty[\frac{-\slashed{p}_1+\slashed{k}^\prime_1+m}{-t+m^2}+\frac{-\slashed{p}_1+\slashed{k}^\prime_2+m}{-u+m^2}]u_{s_1}(\vb{p}_1),
\end{aligned}
\end{equation}
where $t=-(p_1-k_1^\prime)^2$ and $u=-(p_1-k_2^\prime)^2$.
\begin{equation}
\begin{aligned}
i\mathcal{T}_{e^-e^-\to e^-e^-}&=\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrow} (1,-1);
\draw (1,-1) -- node {\midarrow} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$p_1$};
\node at (2.2,0.3){$p_1^\prime$};
\node at (2,-0.5){$p_1-p_1^\prime$};
\node at (-0.2,-1.2){$p_2$};
\node at (2.2,-1.2){$p_2^\prime$};
\end{tikzpicture}
\end{gathered}-
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrow} (1,-1);
\draw (1,-1) -- node {\midarrow} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$p_1$};
\node at (2.2,0.3){$p_2^\prime$};
\node at (2,-0.5){$p_1-p_2^\prime$};
\node at (-0.2,-1.2){$p_2$};
\node at (2.2,-1.2){$p_1^\prime$};
\end{tikzpicture}
\end{gathered}\\
&=ig^2\qty[\frac{\bar{u}_{s^\prime_1}(\vb{p}_1^\prime)u_{s_1}(\vb{p}_1)\bar{u}_{s^\prime_2}(\vb{p}_2^\prime)u_{s_2}(\vb{p}_2)}{-t+M^2}-\frac{\bar{u}_{s^\prime_2}(\vb{p}_2^\prime)u_{s_1}(\vb{p}_1)\bar{u}_{s^\prime_1}(\vb{p}_1^\prime)u_{s_2}(\vb{p}_2)}{-u+M^2}],
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
i\mathcal{T}_{e^+e^+\to e^+e^+}&=\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrowleft} (1,0);
\draw (1,0) -- node {\midarrowleft} (2,0);
\draw (0,-1) -- node {\midarrowleft} (1,-1);
\draw (1,-1) -- node {\midarrowleft} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$-p_1$};
\node at (2.2,0.3){$-p_1^\prime$};
\node at (2,-0.5){$p_1-p_1^\prime$};
\node at (-0.2,-1.2){$-p_2$};
\node at (2.2,-1.2){$-p_2^\prime$};
\end{tikzpicture}
\end{gathered}-
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrowleft} (1,0);
\draw (1,0) -- node {\midarrowleft} (2,0);
\draw (0,-1) -- node {\midarrowleft} (1,-1);
\draw (1,-1) -- node {\midarrowleft} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.2){$-p_1$};
\node at (2.2,0.3){$-p_2^\prime$};
\node at (2,-0.5){$p_1-p_2^\prime$};
\node at (-0.2,-1.2){$-p_2$};
\node at (2.2,-1.2){$-p_1^\prime$};
\end{tikzpicture}
\end{gathered}\\
&=ig^2\qty[\frac{\bar{v}_{s_1}(\vb{p}_1)v_{s^\prime_1}(\vb{p}_1^\prime)\bar{v}_{s_2}(\vb{p}_2)v_{s^\prime_2}(\vb{p}_2^\prime)}{-t+M^2}-\frac{\bar{v}_{s_1}(\vb{p}_1)v_{s^\prime_2}(\vb{p}_2^\prime)\bar{v}_{s_2}(\vb{p}_2)v_{s^\prime_1}(\vb{p}_1^\prime)}{-u+M^2}],
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
i\mathcal{T}_{e^+e^-\to e^+e^-}&=\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- node {\midarrow} (1,0);
\draw (1,0) -- node {\midarrow} (2,0);
\draw (0,-1) -- node {\midarrowleft} (1,-1);
\draw (1,-1) -- node {\midarrowleft} (2,-1);
\draw[-triangle 90] (1,-0.4)--(1,-0.5);
\draw (1,0)[densely dotted] -- (1,-1);
\node at (-0.2,0.25){$p_1$};
\node at (2.2,0.3){$p_1^\prime$};
\node at (2,-0.5){$p_1-p_1^\prime$};
\node at (-0.2,-1.2){$-p_2$};
\node at (2.2,-1.2){$-p_2^\prime$};
\end{tikzpicture}
\end{gathered}-
\begin{gathered}
\begin{tikzpicture}
\draw[densely dotted] (0,0) -- node{\midarrow} (1.5,0);
\node at (0.75,0.5){$p_1+p_2$};
\draw (-1,0.5) -- node{\midarrow} (0,0);
\draw (-1,-0.5) -- node{\midarrowleft} (0,0);
\draw (2.5,0.5) -- node{\midarrow} (1.5,0);
\draw (2.5,-0.5) -- node{\midarrowleft} (1.5,0);
\node at (-1,0.7) {$p_1$};
\node at (-1,-0.7) {$-p_2$};
\node at (2.5,0.7) {$p_1^\prime$};
\node at (2.5,-0.7) {$-p_2^\prime$};
\end{tikzpicture}
\end{gathered}\\
&=ig^2\qty[\frac{\bar{u}_{s^\prime_1}(\vb{p}_1^\prime)u_{s_1}(\vb{p}_1)\bar{v}_{s_2}(\vb{p}_2)v_{s^\prime_2}(\vb{p}_2^\prime)}{-t+M^2}-\frac{\bar{v}_{s_2}(\vb{p}_2)u_{s_1}(\vb{p}_1)\bar{u}_{s^\prime_1}(\vb{p}_1^\prime)v_{s^\prime_2}(\vb{p}_2^\prime)}{-s+M^2}],
\end{aligned}
\end{equation}
where, in the three cases, $s=-(p_1+p_2)^2$, $t=-(p_1-p_1^\prime)^2$ and $u=-(p_1-p_2^\prime)^2$.