-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2chap1.tex
709 lines (692 loc) · 38.6 KB
/
2chap1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
\chapter{Path Integrals for Interacting Real Scalar Fields}
We incorporate interactions to our theories by adding terms to the Hamiltonian as perturbations. In this case, the path integral will require a series expansion, for which \textit{Feynman diagrams} will be a useful tool for graphically representing, organizing and enumerating terms.
\section{Perturbative treatment of gaussian integrals}
To introduce the core idea behind Feynman Diagrams, we consider a simpler problem, a ``baby problem" in which diagrams can be used to represent terms of a series. Inpired by Zee's \cite{zee2010quantum} approach, we consider the problem of evaluating the integral
\begin{equation}
Z(J)=\int\dd q\, \exp[-\frac{1}{2}m^2q^2+\frac{1}{3!}gq^3+Jq],
\label{z_toy}
\end{equation}
where $m$, $g$ and $J$ hold no functional dependence with $q$. We separate the linear and quadratic terms inside the exponential from the cubic term and expand the exponential with the cubic term:
\begin{equation}
Z(J)=\int\dd q\, e^{-\frac{1}{2}m^2q^2+Jq}\qty[1+\frac{1}{3!}gq^3+\frac{1}{2!(3!)^2}g^2q^6+\frac{1}{3!(3!)^3}g^3q^9+\dots].
\end{equation}
We highlight the result:
\begin{equation}
\int\dd q\, q^{n}e^{-\frac{1}{2}m^2q^2+Jq}=\qty(\dv{J})^{n}\int\dd q\,e^{-\frac{1}{2}m^2q^2+Jq}
\end{equation}
which is valid for even and odd $n$, although the odd powers yield a null integral (odd functions in symmetric interval). Then $Z(J)$ reads
\begin{equation}
\begin{aligned}
Z=&\int\dd q\, e^{-\frac{1}{2}m^2q^2+Jq}\qty[1+\frac{1}{3!}gq^3+\frac{1}{2!(3!)^2}g^2q^6+\frac{1}{3!(3!)^3}g^3q^9+\dots]\\
=&\qty[1+\frac{1}{3!}g\qty(\dv{J})^3+\frac{1}{2!(3!)^2}g^2\qty(\dv{J})^6+\frac{1}{3!(3!)^3}g^3\qty(\dv{J})^9+\dots]\int\dd q\, e^{-\frac{1}{2}m^2q^2+Jq}\\
=&\exp[\frac{1}{3!}\,g\qty(\dv{J})^3]\int\dd q\, e^{-\frac{1}{2}m^2q^2+Jq}.
\end{aligned}
\label{interac_out}
\end{equation}
Completing the square we evaluate the Gaussian integral
\begin{equation}
\int\dd q\, e^{-\frac{1}{2}m^2q^2+Jq}=\sqrt{\frac{2\pi}{m^2}}\,e^{J^2/2m^2},
\end{equation}
so that
\begin{equation}
Z(J)=\sqrt{\frac{2\pi}{m^2}}\exp[\frac{1}{3!}\,g\qty(\dv{J})^3]\exp[\frac{J^2}{2m^2}].
\label{Z_exps}
\end{equation}
Up to a normalization constant, we have the series
\begin{equation}
Z(J)\propto\sum_{V=0}^\infty\frac{1}{V!}\qty[\frac{1}{3!}\,g\qty(\dv{J})^3]^V\sum_{P=0}^\infty\frac{1}{P!}\qty[\frac{J^2}{2m^2}]^P.
\label{Z_series}
\end{equation}
To organize its terms we will associate to each term a graph. The task of evaluating the series up to a certain order will be simplified: we only need to draw diagrams corresponding to that order and translate to the desired term in the series. To see how this can be done, consider, more explicitly, expansion (\ref{Z_series}):
\begin{equation}
\begin{aligned}
Z(J)=&\qty[1+\frac{1}{3!}g\qty(\dv{J})^3+\frac{1}{2!(3!)^2}g^2\qty(\dv{J})^6+\frac{1}{3!(3!)^3}g^3\qty(\dv{J})^9+\dots]\times\\
&\qty[1+\frac{J^2}{2m^2}+\frac{1}{2!}\qty(\frac{J^2}{2m^2})^2+\frac{1}{3!}\qty(\frac{J^2}{2m^2})^3+\frac{1}{4!}\qty(\frac{J^2}{2m^2})^4+\dots].
\label{expansaozona}
\end{aligned}
\end{equation}
Suppose we are interested in the term linear in $g$ and cubic in $J$. This corresponds to the term resulting from the product of the second term in the first pair of brackets by the fourth term in the second pair, that is:
\begin{equation}
\frac{1}{3!}g\qty(\dv{J})^3\times\frac{1}{3!}\qty(\frac{J^2}{2m^2})^3=\qty(\frac{1}{2m^2})^3\frac{6!}{(3!)^3}gJ^3.
\label{termogJ3}
\end{equation}
Next, we draw a diagram
consisting of lines, blobs and vertices that must join three lines (for this problem):
\begin{itemize}
\item A line corresponds to a factor of $\qty(\frac{1}{m^2})$: the ``propagator" for this theory;
\item A vertex corresponds to a factor $g$;
\item Blobs at the end of lines should correspond to factors $J$: the sources
\end{itemize}
A diagram for term (\ref{termogJ3}), for instance, needs three sources, three lines and one vertex, as indicated by Figure \ref{tres}.
\begin{figure}[h]
\centering
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (0,-1) circle (0.3 cm);
\draw (0,0) -- (1,1);
\draw (0,0) -- (-1,1);
\draw (0,0) -- (0,-1);
\end{tikzpicture}
\caption{Diagram for term (\ref{termogJ3}) of (\ref{Z_series}).}
\label{tres}
\end{figure}\\
The number of sources and vertices in a diagram determine the order in $J$ and $g$ of the term in (\ref{Z_series}) that the graph represents.
To reconstruct a term from a diagram, we identify each element in the graph (lines, vertices, blobs), and associate to them the corresponding factor ($m^{-2}$, $g$ and $J$). The complete term is the multiplication of all the factors present in a diagram. As another example, the term linear both in $g$ and $J$ is
\begin{equation}
\frac{1}{3!}g\qty(\dv{J})^3\times\frac{1}{2!}\qty(\frac{J^2}{2m^2})^2=\qty(\frac{1}{2m^2})^2\frac{4!}{2!}\frac{1}{3!}gJ,
\label{termogJ}
\end{equation}
resulting from the product of the second term on the first bracket by the third term on the second one in (\ref{expansaozona}). A diagram for this term has one vertex, two propagators, and one source. As vertices must join three lines, one of the propagators must be in a \textit{loop}, as shown by Figure \ref{gJ}.
\begin{figure}[h]
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (2,0);
\draw (2.5,0) circle (0.5 cm);
\end{tikzpicture}
\caption{Diagram for term (\ref{termogJ}) of (\ref{Z_series}) and for term (\ref{gJ_phi3}) of (\ref{Z_1})}
\label{gJ}
\end{figure}
\section{Feynman diagrams for $\phi^3$ theory}
Integral (\ref{z_toy}) can be regarded as the path integral for a field theory in a single space dimension (1+1). Now we consider the usual 3+1 dimensions real scalar field theory. The interaction Lagrangian we will consider is $\mathcal{L}_1=\frac{1}{3!}g\phi^3$, which gives the so-called \textit{phi-cubed} theory. We assume the conditions we required for the validity of the LSZ formula are met, that is
\begin{equation}
\vev{\phi(x)}=0\quad,\quad \bra{k}{\phi(x)}\ket{0}=e^{-ikx}
\end{equation}
with one-particle states normalization
\begin{equation}
\braket{k^\prime}{k}=(2\pi)^32k^0\delta^3(\vb{k}-\vb{k}^\prime).
\end{equation}
To satisfy these, the field can be scaled and shifted, resulting in the Lagrangian
\begin{equation}
\mathcal{L}=-\frac{1}{2}Z_\phi\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}Z_mm^2\phi^2+\frac{1}{3!}Z_gg\phi^3+Y\phi.
\end{equation}
The functional integral reads
\begin{equation}
Z(J)=\braket{0}_J=\int\mathcal{D}\phi\,\exp[i\int\dd^4 x\,(\mathcal{L}_0(\phi,\partial_\mu\phi)+\mathcal{L}_1(\phi)+J(x)\phi)]
\label{path_integral_interacting}
\end{equation}
where we split the Lagrangian as
\begin{equation}
\mathcal{L}_0=-\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}m^2\phi^2
\label{L_0}
\end{equation}
\begin{equation}
\mathcal{L}_1=\frac{1}{3!}Z_g g \phi^3 + \mathcal{L}_{\text{ct}}
\end{equation}
\begin{equation}
\mathcal{L}_{\text{ct}}=-\frac{1}{2}(Z_\phi -1)\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}(Z_m-1)m^2\phi^2+Y\phi
\label{L_ct}
\end{equation}
in order to take advantage of the same procedure we did in (\ref{interac_out}) and our knowledge of the free theory path integral. $\mathcal{L}_{\text{ct}}$ stands for ``counterterm" Lagrangian. As in (\ref{interac_out}), we have
\begin{equation}
Z(J)=\exp[i\int\dd^4x\,\mathcal{L}_1\qty(\frac{1}{i}\fdv{J(x)})]\int\mathcal{D}\phi\, \exp[i\int\dd^4 x\,(\mathcal{L}_0+J\phi)]
\label{interac_out_functional}
\end{equation}
where, as we have seen in previous work
\begin{equation}
Z_0=\int\mathcal{D}\phi\, \exp[i\int\dd^4 x\,(\mathcal{L}_0+J\phi)]=\exp[\frac{i}{2}\int\dd^4x\,\dd^4x^\prime\,J(x)\Delta(x-x^\prime)J(x^\prime)].
\end{equation}
We proceed to calculate (\ref{path_integral_interacting}) ignoring, for now, the counterterms, that is, with interaction Lagrangian being $\mathcal{L}_1=\frac{Z_gg}{3!}\phi^3(x)$ solely. We call this portion of the integral $Z_1$.
\begin{equation}
\begin{aligned}
Z_1(J)&\propto\exp[\frac{iZ_gg}{3!}\int\dd^4x\,\qty(\frac{1}{i}\fdv{J(x)})^3]Z_0(J)\\
&=\sum_{V=0}^\infty\frac{1}{V!}\qty[\frac{iZ_gg}{3!}\int\dd^4x\,\qty(\frac{1}{i}\fdv{J(x)})^3]^V\\&\times\sum_{P=0}^{\infty}\frac{1}{P!}\qty[\frac{i}{2}\int\dd^4x\,\dd^4x^\prime\,J(x)\Delta(x-x^\prime)J(x^\prime)]^P,
\label{Z_1}
\end{aligned}
\end{equation}
which are analogous to (\ref{Z_exps}) and (\ref{Z_series}). Note we have a proportionality rather than an equality since the $\epsilon$ trick \footnote{Recall we are considering $\mathcal{H}\to(1-i\epsilon)\mathcal{H}$} does not preserve normalization, which will be imposed by hand. Acting with the functional derivatives leaves $E=2P-3V$ sources remaining, and an overall phase of $i^{P-2V}=i^{V+E-P}$ in (\ref{Z_1}). For fixed $V$ and $P$, we have $3V$ functional derivatives acting in $2P$ sources, so there are $(2P)!/(2P-3V)!$ combinations for such arrangements. \\
To enumerate and reconstruct a term from (\ref{Z_1}) we introduce \textit{Feynman diagrams}, in a similar manner we did for our simpler example of last section. We associate:
\begin{itemize}
\item a propagator $\frac{1}{i}\Delta(x-y)$ to a line connecting points $x$ and $y$;
\item a source $i\int\dd^4 x\,J(x)$ to a blob at the end or beginning of a line;
\item an amplitude $iZ_gg\int\dd^4x$ to a vertex joining three lines.
\end{itemize}
To get a sense of what we are doing when constructing these diagrams, we will calculate one term and build its corresponding diagram. We consider a diagram with one vertex and two propagators, that is, the term with $V=1$ and $P=2$ in (\ref{Z_1}), giving $E=2P-3V=1$ \textit{externals}, the remaining number of sources. Our task then is to expand
\begin{equation}
\frac{iZ_g g}{2!3!}\int\dd^4x\qty(\frac{1}{i}\fdv{J(x)})^3\qty[\frac{i}{2}\int\dd^4y\,\dd^4zJ(y)\Delta(y-z)J(z)]^2.
\label{expanding_term}
\end{equation}
A laborious task which goes like this
%Tinha feito umas simplificações e a conta saiu com essas terminologias diferentes, vou arrumar. $\delta_x= \fdv{J(x)}$, $J_y=J(y)$ and $\Delta_{yz}=\Delta(y-z)$
\begin{equation}
\begin{aligned}
& = \frac{Z_g g}{2^22!3!}\int\dd^4x\, \qty(\fdv{J(x)})^3\int\dd^4y\,\dd^4z\,\dd^4w\,\dd^4 v J(y)\Delta(y-z)J(z)J(w)\Delta(w-v)J(v)\\
&\vdots\\ &=\frac{Z_gg}{48}\int\dd^4x\,\dd^4y\,\dd^4z\,\dd^4w\,\dd^4v \Big[\delta^4(y-x)\Delta(y-z)\delta^4(z-x)\delta^4(w-x)\Delta(w-v)J(v)\\
&\qquad+\delta^4(y-x)\Delta(y-z)\delta^4(z-x)J(w)\Delta(w-v)\delta^4(v-x)+\overbrace{\dots}^{\text{22 terms}}\Big]\\
&=\frac{Z_gg}{48} \qty[\int\dd^4x\,\dd^4v\Delta(0)\Delta(x-v)J(v)+\int\dd^4x\,\dd^4w\,\Delta(0)J(w)\Delta(w-x)+\overbrace{\dots}^{\text{22 terms}}]
\end{aligned}
\end{equation}
In the second equality, the other $22$ terms are just like the ones indicated: all of them consist of three Delta functions, two propagators and one source, but with variables at which these objects are evaluated permuted. In the last line, integration simplify the Deltas in each term, and since the resulting 24 terms differ only by the dummy integration variables, we find
\begin{equation}
\frac{Z_gg}{2} \int\dd^4x\,\dd^4v\Delta(0)\Delta(x-v)J(v)
\label{gJ_phi3}.
\end{equation}
This term can be found from the following diagram: $\frac{1}{i}\Delta(0)$ corresponds to a propagator taking a point into itself: a loop. $\frac{1}{i}\Delta(x-y)$ corresponds to a line from $x$ to $y$ and a vertex accounts for $iZ_gg\int\dd^4x$, connecting three lines. We also need a source, which is attached to the free end of the $\Delta(x-y)$. The diagram is assembled as we connect the two ends of $\Delta(0)$ to $\Delta(x-y)$ propagator, being identical to diagram presented in Figure \ref{gJ}.\\
We see that the diagram accounts for everything except for the $1/2$ factor. We now focus on how to determine the numerical factors accompanying a term cast from a diagram. This is the problem of determining how many diagrams correspond to the same term in (\ref{Z_1}). To assess this issue, we note that in the first series of (\ref{Z_1}) (the one summing over $V$), for a given fixed $V$, we can rearrange the order of the three functional derivatives and the order of the $V$ vertices. The swap of derivatives (which effectively swaps the ends of propagators) gives $3!$ different diagrams per vertex, and the swap of vertices gives $V!$ different diagrams. This accounts for $(3!)^VV!$ diagrams to the same term, since these changes leave the diagram invariant. Similarly, in the second series (the one summing over $P$), we can rearrange the two sources and also the $P$ propagators themselves, so there are $(2!)^PP!$ diagrams for the same term. All these factors combined cancel the $((3!)^VV!(2!)^PP!)^{-1}$ factor in (\ref{Z_1}). \\
%some of these multiple rearrangements of sources and propagators give the same diagram then we have overcounted terms and the factors will not exactly cancel,
However, this reasoning can lead to an overcount in some situations. Sometimes the factors don't exactly cancel, just as in our example above (\ref{gJ_phi3}), where we got a $1/2$ left. The overcount in our enumeration considerations is related to some \textit{symmetry} property of a diagram.
%happening whenever rearrangement of propagators gives the same diagram as a rearrangement of sources.
We must identify how much we have overcounted, so we can divide each term in the series by its corresponding diagram's \textit{symmetry factor}.
%We must be able to identify how many of these terms giving equivalent diagrams there are so we can divide each term in the series by its corresponding diagram's \textit{symmetry factor}, which indicates how much we overcounted that specific term.\\
If we take a look at diagram of Figure (\ref{gJ}) we see that swapping the ends of the loop is equivalent to swapping two legs of the vertex. So there are actually two diagrams corresponding to the same term, thus justifying the $1/2$ factor.\\
Diagram in Figure (\ref{tres}) can also represent a term in (\ref{Z_1}):
\begin{equation}
\frac{iZ_g g}{ 3!}\int\dd^4x\,\dd^4y\,\dd^4z\,\dd^4w\, J(y)\Delta(y-x)J(z)\Delta(z-x)J(w)\Delta(w-x).
\end{equation}
We have three propagators and any of the $3!$ rearrangements of them gives us the same diagram. This justifies the symmetry factor. Other examples of diagrams are the ones indicated in Figure (\ref{p3v2e0}), with their corresponding symmetry factor. We also highlight an important diagram we will need when dealing with scattering, which that of Figure (\ref{tree_diagramJ}). A complete list of diagrams in $\phi^3$ theory can be found in Chapter 9 of Srednicki \cite{srednicki2007quantum}.\\
\begin{figure}[h]
\begin{subfigure}[b]{0.45\textwidth}
\centering
\begin{tikzpicture}
\draw (1,1) circle (0.5 cm);
\draw (4,1) circle (0.5 cm);
\draw (1.5,1) -- (3.5,1);
\end{tikzpicture}
\caption{$S=2^3$}
\end{subfigure}
~
\begin{subfigure}[b]{0.45\textwidth}
\centering
\begin{tikzpicture}
\draw (1,1) circle (0.5 cm);
\draw (0.5,1) -- (1.5,1);
\end{tikzpicture}
\caption{$S=2\times 3!$}
\end{subfigure}
\caption{Diagrams with $P=3$, $V=2$, $E=0$.}
\label{p3v2e0}
\end{figure}
\begin{figure}
\centering
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (-0.5,0) -- (0.5,0);
\draw (-1,1) -- (-0.5,0);
\draw (1,1) -- (0.5,0);
\draw (-1,-1) -- (-0.5,0);
\draw (1,-1) -- (0.5,0);
\end{tikzpicture}
\caption{Diagram with $P=5$, $V=2$, $E=4$, and $S=2^3$.}
\label{tree_diagramJ}
\end{figure}
\section{The path integral as the sum of connected diagrams}
Diagrams we dealt so far are all connected: every two points can be connected by the trace of, say, a pen, continuously. However $Z(J)$ must include also other contributions arising from more general diagrams. The most general diagram $D$ is composed of the product of connected diagrams $C_I$
\begin{equation}
D=\prod_{I}C_I^{n_I}
\end{equation}
where $C_I$ is the $I$-th connected diagram (with its symmetry factor included) and $n_I$ is the number of $C_I$'s present in $D$. However, since exchanges of propagators and vertices among different connected diagrams can result in the same diagrams, we must include an additional symmetry factor $S_D$. The exchanges that can leave the diagram unchanged are those performed between different but identical connected diagrams $C_I$. Since there are $n_I$ $C_I$'s in $D$, we can conclude that $S_D=\prod_I n_I!$, so that a general diagram reads
\begin{equation}
D=\prod_{I}\frac{1}{n_I!}C_I^{n_I}
\end{equation}
Equation (\ref{Z_1}) tell us that $Z(J)$ is proportional to the sum over diagrams and, since diagrams are labeled by $n_I$, then
\begin{equation}
\begin{aligned}
Z_1(J)\propto&\sum_{\{n_I\}}D\\=&\sum_{\{n_I\}}\prod_{I}\frac{1}{n_I!}C_I^{n_I}\\
=&\sum_{n_1,n_2\dots}\frac{1}{n_1!}C_1^{n_1}\frac{1}{n_2!}C_2^{n_2}\dots\\
=&\prod_I\sum_{n_I=0}^\infty\frac{1}{n_I!}C_I^{n_I}\\
=&\prod_I\exp(C_I)\\
=&\exp\sum_IC_I.
\end{aligned}
\end{equation}
A remarkable result, indicating that $Z_1(J)$ is proportional to the exponential of the sum of connected diagrams. This readily gives us a normalization criterion: if we wish $Z_1(0)=1$ we must omit \textit{vacuum diagrams} from the sum: those with no sources. With this convention we pretend vacuum diagrams don't even exist, we simply don't count them. Then, the sum of connected diagrams with no sources equals zero. We write
\begin{equation}
Z_1(J)=\exp [iW_1(J)]
\end{equation}
where
\begin{equation}
iW_1(J)=\sum_{I\neq\{0\}}C_I
\end{equation}
is the sum of connected diagrams omitting vacuum diagrams.\\
\section{Dealing with counterterms}
\subsection{Tadpoles}
So far we have been ignoring the other terms in the interaction Lagrangian. We analyze the consequences this leads to. The vacuum expectation value of the field is
\begin{equation}
\begin{aligned}
\vev{\phi(x)}=&\frac{1}{i}\fdv{J(x)}Z_1(J)\eval_{J=0}\\
=&\fdv{J(x)}W_1(J)\eval_{J=0}
\end{aligned}
\label{1Pcorrelation}
\end{equation}
In the last equality, the functional derivative removes a source from the sum of diagrams, and then, when we evaluate the derivative at $J=0$, we are left only with the diagrams that had a single source, but now have this source removed. One of these diagrams is the one shown in Figure (\ref{gJ}) with its source removed, adding the others:
\begin{equation}
\begin{aligned}
\vev{\phi(x)}&=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw (1.3,0) circle [radius=0.3cm];
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw (1.3,0) circle [radius=0.3cm];
\draw (1.3,0.3) -- (1.3,-0.3);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (0.5,0);
\draw (0.8,0) circle [radius=0.3cm];
\draw (1.1,0) -- (1.6,0);
\draw (1.9,0) circle [radius=0.3cm];
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (1.35,0) -- (1.35,0.5);
\draw (0.8,0) circle [radius=0.3cm];
\draw (1.1,0) -- (1.6,0);
\draw (1.9,0) circle [radius=0.3cm];
\end{tikzpicture}
\end{gathered}
\\&=\frac{1}{2}iZ_gg\int\dd^4y\frac{1}{i}\Delta(x-y)\frac{1}{i}\Delta(0)+\order{g^3}.
\end{aligned}
\end{equation}
In the last line we translated only the diagram linear in $g$. The point here is that $\vev{\phi(x)}$ is not zero, as required by LSZ formula. This is no big news, since we are ignoring the other terms in the Lagrangian. To fix the expectation value, it's sufficient to consider the linear term $Y\phi$ from $\mathcal{L}_{\text{ct}}$, so that the interaction Lagrangian now reads
\begin{equation}
\mathcal{L}_1=\frac{1}{3!}Z_gg\phi^3+Y\phi
\end{equation}
and (\ref{Z_1}) gets a new term
\begin{equation}
\begin{aligned}
Z_Y(J)=&\exp\qty[\frac{1}{3!}iZ_gg\int\dd^4x\qty(\frac{1}{i}\fdv{J(x})^3+iY\int\dd^4x\, \frac{1}{i}\fdv{J(x)}]Z_0(J)\\
=&\exp\qty[iY\int\dd^4x\, \frac{1}{i}\fdv{J(x)}]Z_1(J)\\
=&\sum_{X=0}^\infty\frac{1}{X!}\qty[iY\int\dd^4x\, \frac{1}{i}\fdv{J(x)}]^XZ_1(J).
\end{aligned}
\label{ZY}
\end{equation}
This gives us a new series and introduce a new vertex to our diagrams: those corresponding to $iY\int\dd^4y$. The diagrams for the $X=0$ terms are all the previous diagrams we have been dealing so far. Since, for $P=2$ and $V=1$, we know the diagram for $Z_1$ linear in $g$ is that of Figure (\ref{gJ}) we built before. Now, if we consider $X=1$ in (\ref{ZY}) we get the term linear in $g$ and in $Y$:
\begin{equation}
\begin{aligned}
Z_Y(J)&=iY \frac{Z_gg}{2}\int\dd^4x^\prime\frac{1}{i}\fdv{J(x^\prime)}
\int\dd^4x\,\dd^4y\Delta(0)\Delta(x-y)J(y)+\order{g^3}\\
&= \frac{YZ_gg}{2}\int\dd^4x^\prime
\dd^4x\,\Delta(0)\Delta(x-x^\prime)+\order{g^3}
\end{aligned}
\end{equation}
which can be represented by the following diagram
\begin{equation}
Z_Y(J)=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw (-0.1,-0.1) -- (0.1,0.1);
\draw (-0.1,0.1) -- (0.1,-0.1);
\draw (1.3,0) circle [radius=0.3cm];
\end{tikzpicture}
\end{gathered}
\label{tadpole}
\end{equation}
where the line abruptly ending in a ``x" corresponds to our new vertex $iY\int\dd^4 y$. Other examples of connected diagrams with vertices from the linear counterterm are shown in Figure (\ref{diagramaX}).\\
\begin{figure}[h]
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (0.9,-0.1) -- (1.1, 0.1);
\draw (0.9,0.1) -- (1.1, -0.1);
\end{tikzpicture}
% \caption{$S=1$}
\end{subfigure}
~
\begin{subfigure}[]{0.3\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1.5,0) circle (0.5 cm);
\draw (2,0) -- (3,0);
\draw (2.9,-0.1) -- (3.1, 0.1);
\draw (2.9,0.1) -- (3.1, -0.1);
\end{tikzpicture}
% \caption{$S=2$}
\end{subfigure}
~
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1,-1) -- (1,1);
\draw (0.9,-1.1) -- (1.1, -0.9);
\draw (0.9,-0.9) -- (1.1, -1.1);
\draw (0.9,1.1) -- (1.1, 0.9);
\draw (0.9,0.9) -- (1.1, 1.1);
\end{tikzpicture}
% \caption{$S=2$}
\end{subfigure}
~
\begin{subfigure}[]{0.2\textwidth}
\centering
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1.3,0);
\draw (1.8,0) circle (0.5 cm);
\draw (0.8,0) -- (0.8,0.5);
\draw (0.7,0.4) -- (0.9,0.6);
\draw (0.7,0.6) -- (0.9,0.4);
\end{tikzpicture}
% \caption{$S=2$}
\end{subfigure}
\caption{Diagrams for (\ref{ZY}) with $E=1$, $X\geq1$}
\label{diagramaX}
\end{figure}
The same reasoning we did previously tells us that $Z_Y(J)$ equals the exponential of the sum of connected diagrams and, again, we omit vacuum diagrams (such as (\ref{tadpole})) to ensure normalization. When computing the VEV of (\ref{1Pcorrelation}), we again find it equal the sum of single source diagrams, with the sources removed. The difference now is that we include the diagrams with $X\neq 0$, such as the ones in Figure (\ref{diagramaX}). We assert that $Y=\order{g}$ and $Z_g=1+\order{g^2}$ \cite{srednicki2007quantum}, so, up to $\order{g}$, we consider $Z_g=1$ and the correlation reads
\begin{equation}
\begin{aligned}
\vev{\phi(x)}&=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw (0.9,-0.1) -- (1.1, 0.1);
\draw (0.9,0.1) -- (1.1, -0.1);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (1,0);
\draw (1.3,0) circle [radius=0.3cm];
\end{tikzpicture}
\end{gathered}+\order{g^3}\\
&=\qty(iY+\frac{1}{2}i g\frac{1}{i}\Delta(0))\int\dd^4y\frac{1}{i}\Delta(x-y)+\order{g^3}.
\end{aligned}
\end{equation}
Therefore, to attain the LSZ condition, we need
\begin{equation}
Y=\frac{1}{2}ig\Delta(0)+\order{g^3}
\label{1pcoorelation_X}
\end{equation}
so that $\vev{\phi(x)}=0$. Being present in the Lagrangian, we know that $Y$ must be real so
\begin{equation}
\Delta(0)=\int\frac{\dd^4k}{(2\pi)^4}\frac{1}{k^2+m^2-i\epsilon}
\end{equation}
must be purely imaginary. The problem is that this integral diverges, so we need to find a way to implement an ultraviolet cutoff. This cutoff is subtly implemented by considering
\begin{equation}
\Delta(x-y)=\int\frac{\dd^4k}{(2\pi)^4}\frac{e^{ik(x-y)}}{k^2+m^2-i\epsilon}\qty[\frac{\Lambda^2}{k^2+\Lambda^2-i\epsilon}]^2
\end{equation}
This way $\Delta(0)=i\Lambda^2/(16\pi^2)$, and we are in the position to take $\Lambda\to\infty$, making $Y\to\infty$ while $\vev{\phi(x)}=0$ \cite{srednicki2007quantum}. If we wish to calculate (\ref{1pcoorelation_X}) to higher order in $g$ we must consider the other diagrams of equation (\ref{1Pcorrelation}) and of Figure (\ref{diagramaX}).
Result (\ref{1pcoorelation_X}) indicates that the sum of diagrams of a single source, with that source removed, equals zero when considering the linear counterterm. The remarkable statement now is that if we replace that single source that gets removed by any other sub-diagram, the result still holds, the sum still vanishes. This is because if we replace the single source by the sub-diagram whose translation in terms of sources, propagators and vertices reads $\text{sub(x)}$, then the complete diagram, with a source replaced by $\text{sub(x)}$ reads $\int \dd^4x\,\text{sub(x)}\,\text{main}(x)$, where $\text{main}(x)$ is the sum of diagrams with a single source with that source removed, i.e. $\vev{\phi(x)}=0$. Thus $\int\dd^4x\,\text{sub(x)}\vev{\phi(x)}=0$. The diagrams responsible for this fact are those introduced by the linear counterterm. Diagrams cancelled with the linear counterterms are called \textit{tadpoles}. They are the ones that, when a single line is cut, leaves the diagram divided into two parts, one of which has no sources. Since they cancel with linear counterterms, we take as convention to simply ignore linear counterterms and the tadpoles altogether. \\
\subsection{Other counterterms}
We now focus on the remaining counterterms $-\frac{1}{2}(Z_\phi -1)\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}(Z_m-1)m^2\phi^2$. We rename $A=Z_\phi-1$ and $B=Z_m-1$ (both of the order of $\order{g^2}$) so that the path integral reads
\begin{equation}
Z(J)=\exp{-\frac{i}{2}\int\dd^4x\,\qty[A\partial^\mu\qty(\frac{1}{i}\fdv{j(x)})\partial_\mu\qty(\frac{1}{i}\fdv{J(x)})+\frac{1}{2}Bm^2\qty(\frac{1}{i}\fdv{J(x)})^2]}Z_Y.
\end{equation}
Integration by parts allows us to write
\begin{equation}
Z(J)=\exp[-\frac{i}{2}\int\dd^4x\qty(\frac{1}{i}\fdv{J(x)})\qty(-A\partial^2+Bm^2)\qty(\frac{1}{i}\fdv{J(x)})]Z_Y
\end{equation}
This gives rise to a new vertex where two lines meet, for which we associate $-i\int\dd^4x(-A\partial^2+Bm^2)$. Since the lowest of these diagrams are already of the order of $g^2$, we won't be dealing with them. The diagrams we will be considering for the sum of connected diagrams $iW(J)$, thus, are the ones with or more sources, and we will ignore tadpoles and the ones arising from the linear counterterm. They are shown below, up to $g^4$.
\begin{equation}
\begin{aligned}
iW(J)&=
\begin{gathered}
\begin{tikzpicture}
\draw (0,0) -- (2,0);
\fill [black] (0,0) circle (0.3 cm);
\fill [black] (2,0) circle (0.3 cm);
\end{tikzpicture}
\end{gathered}
+\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1.5,0) circle (0.5 cm);
\draw (2,0) -- (3,0);
\fill [black] (3,0) circle (0.3 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1.5,0) circle (0.5 cm);
\draw (2,0) -- (3,0);
\fill [black] (3,0) circle (0.3 cm);
\draw (1.5,0.5)--(1.5,-0.5);
\end{tikzpicture}
\end{gathered}\\
&+\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1.5,0) circle (0.5 cm);
\draw (2,0) -- (2.5,0);
\draw (3,0) circle (0.5 cm);
\draw (3.5,0) -- (4.5,0);
\fill [black] (4.5,0) circle (0.3 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.3 cm);
\draw (0,0) -- (1,0);
\draw (1.8,-0.5) arc (-45:225:0.5);
\draw (1.895,0) -- (3,0);
\fill [black] (3,0) circle (0.3 cm);
\draw (1.45,-0.5) circle (0.35);
\end{tikzpicture}
\end{gathered}\\
&+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (0,-1) circle (0.3 cm);
\draw (0,0) -- (1,1);
\draw (0,0) -- (-1,1);
\draw (0,0) -- (0,-1);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (0,-1) circle (0.3 cm);
\draw (0.35,0.35) -- (1,1);
\draw (-0.35,0.35) -- (-1,1);
\draw (0,-0.5) -- (0,-1);
\draw (0,0) circle (0.5 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (0,-1) circle (0.3 cm);
\draw (-1,1) -- (1,1);
\draw (0,1) -- (0,0.5);
\draw (0,-0.5) -- (0,-1);
\draw (0,0) circle (0.5 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (-0.5,0) -- (0.5,0);
\draw (-1,1) -- (-0.5,0);
\draw (1,1) -- (0.5,0);
\draw (-1,-1) -- (-0.5,0);
\draw (1,-1) -- (0.5,0);
\end{tikzpicture}
\end{gathered}\\
&+\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (-0.5,0.5) -- (-0.5,0.5);
\draw (-0.5,-0.5) -- (-0.5,0.5);
\draw (-0.5,-0.5) -- (0.5,-0.5);
\draw (-0.5,0.5) -- (0.5,0.5);
\draw (0.5,0.5) -- (0.5,-0.5);
\draw (-1,1) -- (-0.5,0.5);
\draw (1,1) -- (0.5,0.5);
\draw (-1,-1) -- (-0.5,-0.5);
\draw (1,-1) -- (0.5,-0.5);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (0.5,0) circle (0.5 cm);
\draw (-0.5,0) -- (0,0);
\draw (-1,1) -- (-0.5,0);
\draw (1,1) -- (0.85,0.35);
\draw (-1,-1) -- (-0.5,0);
\draw (1,-1) -- (0.85,-0.35);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1.2,1.2) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (-0.5,0) -- (0.5,0);
\draw (-1,1) -- (-0.5,0);
\draw (0.7,0.3) -- (0.5,0);
\draw (-1,-1) -- (-0.5,0);
\draw (1,-1) -- (0.5,0);
\draw (0.85,0.85) -- (1.2,1.2);
\draw (0.7,0.6) circle (0.3cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill[black] (1,1) circle (0.3 cm);
\fill[black] (-1,1) circle (0.3 cm);
\fill[black] (-1,-1) circle (0.3cm);
\fill[black] (1,-1) circle (0.3 cm);
\draw (-0.5,0) -- (-0.3,0);
\draw (0.3,0) -- (0.5,0);
\draw (-1,1) -- (-0.5,0);
\draw (1,1) -- (0.5,0);
\draw (-1,-1) -- (-0.5,0);
\draw (1,-1) -- (0.5,0);
\draw (0,0) circle (0.3 cm);
\end{tikzpicture}
\end{gathered}+\order{g^5}
\end{aligned}
\label{iWphi3}
\end{equation}
\section{Feynman diagrams for $\phi^4$ theory}
For this theory, we consider the Lagrangian $\mathcal{L}=\mathcal{L}_0+\mathcal{L}_1$ where now
\begin{equation}
\mathcal{L}_1=-\frac{1}{4!}Z_\lambda\lambda\phi^4(x)+\mathcal{L}_{\text{ct}},
\end{equation}
$\mathcal{L}_0$ and $\mathcal{L}_{\text{ct}}$ are as in (\ref{L_0}) and (\ref{L_ct}), respectively. Again, the functional integral takes the form of (\ref{interac_out_functional}). Ignoring counterterms, we have
\begin{equation}
Z(J)=\sum_{V=0}^\infty\frac{1}{V!}\qty[\frac{iZ_\lambda\lambda}{4!}\int\dd^4x\qty(\frac{1}{i}\fdv{J(x)})^4]^V\sum_{P=0}^\infty\frac{1}{P!}\qty[\frac{i}{2}\int\dd^4x\,\dd^4y\,J(x)\Delta(x-y)J(y)]^P.
\end{equation}
The functional derivatives act on the propagators leaving $E=2P-4V$ sources remaining and an overall phase $i^{P-3V}=i^{E+V-P}$. Feynman diagrams are built according to these rules:
\begin{itemize}
\item A vertex is where \textit{four lines} meet, and we associate $iZ_\lambda\lambda\int\dd^4x$ to it.
\item A source is represented by a blob, and we associate $i\int\dd^4x\,J(x)$ for each one of them
\item A line joining points $x$ and $y$ corresponds to the propagator $\frac{1}{i}\Delta(x-y)$
\end{itemize}
The contributions to the sum of connected diagrams with $0<V\leq2$ and $0<E\leq4$ (omitting vacuum diagrams) are shown below.\\
\begin{equation}
\begin{aligned}
iW_1(J)&=
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- (1.5,0);
\fill[black] (1.5,0) circle (0.2cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- (1.5,0);
\fill[black] (1.5,0) circle (0.2cm);
\draw (0.75,0.25) circle (0.25 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- (1.5,0);
\fill[black] (1.5,0) circle (0.2cm);
\draw (0.75,0.25) circle (0.25 cm);
\draw (0.75,0.75) circle (0.25 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- (2,0);
\fill[black] (2,0) circle (0.2cm);
\draw (1,0) circle (0.25 cm);
\end{tikzpicture}
\end{gathered}\\
&+\begin{gathered}
\begin{tikzpicture}
\fill [black] (0,0) circle (0.2 cm);
\draw (0,0) -- (2,0);
\fill[black] (2,0) circle (0.2cm);
\draw (0.6,0.25) circle (0.25 cm);
\draw (1.4,0.25) circle (0.25 cm);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (-0.5,-0.5) circle (0.2 cm);
\fill [black] (-0.5,0.5) circle (0.2 cm);
\fill [black] (0.5,0.5) circle (0.2 cm);
\fill [black] (0.5,-0.5) circle (0.2 cm);
\draw (-0.5,-0.5) -- (0.5,0.5);
\draw (-0.5,0.5) -- (0.5,-0.5);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (-0.5,-0.5) circle (0.2 cm);
\fill [black] (-0.5,0.5) circle (0.2 cm);
\fill [black] (0.5,0.5) circle (0.2 cm);
\fill [black] (0.5,-0.5) circle (0.2 cm);
\draw (0,0) circle (0.25 cm);
\draw (-0.5,-0.5) -- (-0.25,0);
\draw (-0.5,0.5) -- (-0.25,0);
\draw (0.5,0.5) -- (0.25,0);
\draw (0.5,-0.5) -- (0.25,0);
\end{tikzpicture}
\end{gathered}+
\begin{gathered}
\begin{tikzpicture}
\fill [black] (-0.5,-0.5) circle (0.2 cm);
\fill [black] (-0.5,0.5) circle (0.2 cm);
\fill [black] (0.8,0.8) circle (0.2 cm);
\fill [black] (0.5,-0.5) circle (0.2 cm);
\draw (-0.5,-0.5) -- (0.8,0.8);
\draw (-0.5,0.5) -- (0.5,-0.5);
\draw (0.6,0.3) circle (0.2 cm);
\end{tikzpicture}
\end{gathered}
+\order{\lambda^3}
\end{aligned}
\label{W_phi4}
\end{equation}
We analyze the vacuum expectation value for the field in $\phi^4$ to check the consistency with the requirement from the LSZ formula:
\begin{equation}
\vev{\phi(x)}=\frac{1}{i}\fdv{J(x)}Z_1(J)\eval_{J=0}
\label{vevphi4}
\end{equation}
since $Z_1(J)=\exp[iW_1]$, (\ref{vevphi4}) is
\begin{equation}
\vev{\phi(x)}=\fdv{J(x)}W_1\eval_{J=0}
\end{equation}
the sum of diagrams with a single source, with that source removed. As (\ref{W_phi4}) tells us, there are no diagrams of a single source contributing, so $\vev{\phi(x)}$ is precisely zero, and we are in good terms with the requirements from LSZ formula without having to introduce a linear counterterm. Ignoring also the other counterterms, we can take $iW(J)=iW_1(J)$ and $Z(J)=Z_1(J)$.