-
Notifications
You must be signed in to change notification settings - Fork 211
/
datapackage.json
3242 lines (3242 loc) · 96.9 KB
/
datapackage.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"name": "vega-datasets",
"description": "Common repository for example datasets used by Vega related projects. \nBSD-3-Clause license applies only to package code and infrastructure. Users should verify their use of datasets \ncomplies with the license terms of the original sources. Dataset license information, where included, \nis a reference starting point only and is provided without any warranty of accuracy or completeness.\n",
"homepage": "http://github.com/vega/vega-datasets.git",
"licenses": [
{
"name": "BSD-3-Clause",
"path": "https://opensource.org/license/bsd-3-clause",
"title": "The 3-Clause BSD License"
}
],
"contributors": [
{
"title": "UW Interactive Data Lab",
"path": "http://idl.cs.washington.edu"
},
{
"title": "vega-datasets contributors",
"path": "https://github.com/vega/vega-datasets/graphs/contributors"
}
],
"version": "2.11.0",
"created": "2024-12-21T16:09:47.521815+00:00",
"resources": [
{
"name": "7zip.png",
"type": "file",
"description": "Application icons from open-source software projects.",
"path": "7zip.png",
"scheme": "file",
"format": "png",
"mediatype": "image/png",
"encoding": "utf-8",
"bytes": 3969
},
{
"name": "airports.csv",
"type": "table",
"path": "airports.csv",
"scheme": "file",
"format": "csv",
"mediatype": "text/csv",
"encoding": "utf-8",
"bytes": 210365,
"schema": {
"fields": [
{
"name": "iata",
"type": "string"
},
{
"name": "name",
"type": "string"
},
{
"name": "city",
"type": "string"
},
{
"name": "state",
"type": "string"
},
{
"name": "country",
"type": "string"
},
{
"name": "latitude",
"type": "number"
},
{
"name": "longitude",
"type": "number"
}
]
}
},
{
"name": "annual-precip.json",
"type": "json",
"description": "A raster grid of global annual precipitation for the year 2016 at a resolution 1 degree of lon/lat per cell.",
"sources": [
{
"title": "Climate Forecast System Version 2",
"path": "https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2"
}
],
"path": "annual-precip.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 266265
},
{
"name": "anscombe.json",
"type": "table",
"description": "Graphs in Statistical Analysis, F. J. Anscombe, The American Statistician.",
"path": "anscombe.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 1703,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "Series",
"type": "string"
},
{
"name": "X",
"type": "integer"
},
{
"name": "Y",
"type": "number"
}
]
}
},
{
"name": "barley.json",
"type": "table",
"description": "The result of a 1930s agricultural experiment in Minnesota, this dataset contains yields for 10 different varieties of barley at six different sites.\n\nIt was first published by agronomists F.R. Immer, H.K. Hayes, and L. Powers in the 1934 paper \"Statistical Determination of Barley Varietal Adaption\".\n\nR.A. Fisher's popularized its use in the field of statistics when he included it in his book \"The Design of Experiments\".\n\nSince then it has been used to demonstrate new statistical techniques, including the trellis charts developed by Richard Becker, William Cleveland and others in the 1990s.\n",
"sources": [
{
"title": "The Design of Experiments Reference",
"path": "https://en.wikipedia.org/wiki/The_Design_of_Experiments"
},
{
"title": "Trellis Charts Paper",
"path": "http://ml.stat.purdue.edu/stat695t/writings/TrellisDesignControl.pdf"
}
],
"path": "barley.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 8487,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "yield",
"type": "number"
},
{
"name": "variety",
"type": "string"
},
{
"name": "year",
"type": "integer"
},
{
"name": "site",
"type": "string"
}
]
}
},
{
"name": "birdstrikes.csv",
"type": "table",
"description": "Records of reported wildlife strikes received by the U.S. FAA",
"sources": [
{
"title": "FAA Wildlife Strike Database",
"path": "http://wildlife.faa.gov"
}
],
"path": "birdstrikes.csv",
"scheme": "file",
"format": "csv",
"mediatype": "text/csv",
"encoding": "utf-8",
"bytes": 1223329,
"schema": {
"fields": [
{
"name": "Airport Name",
"type": "string"
},
{
"name": "Aircraft Make Model",
"type": "string"
},
{
"name": "Effect Amount of damage",
"type": "string"
},
{
"name": "Flight Date",
"type": "date"
},
{
"name": "Aircraft Airline Operator",
"type": "string"
},
{
"name": "Origin State",
"type": "string"
},
{
"name": "Phase of flight",
"type": "string"
},
{
"name": "Wildlife Size",
"type": "string"
},
{
"name": "Wildlife Species",
"type": "string"
},
{
"name": "Time of day",
"type": "string"
},
{
"name": "Cost Other",
"type": "integer"
},
{
"name": "Cost Repair",
"type": "integer"
},
{
"name": "Cost Total $",
"type": "integer"
},
{
"name": "Speed IAS in knots",
"type": "integer"
}
]
}
},
{
"name": "budget.json",
"type": "table",
"description": "Historical and forecasted federal revenue/receipts produced in 2016 by the U.S. Office of Management and Budget.",
"sources": [
{
"title": "Office of Management and Budget - Budget FY 2016 - Receipts",
"path": "https://www.govinfo.gov/app/details/BUDGET-2016-DB/BUDGET-2016-DB-3"
}
],
"path": "budget.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 391353,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "Source Category Code",
"type": "integer"
},
{
"name": "Source category name",
"type": "string"
},
{
"name": "Source subcategory",
"type": "integer"
},
{
"name": "Source subcategory name",
"type": "string"
},
{
"name": "Agency code",
"type": "integer"
},
{
"name": "Agency name",
"type": "string"
},
{
"name": "Bureau code",
"type": "integer"
},
{
"name": "Bureau name",
"type": "string"
},
{
"name": "Account code",
"type": "integer"
},
{
"name": "Account name",
"type": "string"
},
{
"name": "Treasury Agency code",
"type": "integer"
},
{
"name": "On- or off-budget",
"type": "string"
},
{
"name": "1962",
"type": "string"
},
{
"name": "1963",
"type": "string"
},
{
"name": "1964",
"type": "string"
},
{
"name": "1965",
"type": "string"
},
{
"name": "1966",
"type": "string"
},
{
"name": "1967",
"type": "string"
},
{
"name": "1968",
"type": "string"
},
{
"name": "1969",
"type": "string"
},
{
"name": "1970",
"type": "string"
},
{
"name": "1971",
"type": "string"
},
{
"name": "1972",
"type": "string"
},
{
"name": "1973",
"type": "string"
},
{
"name": "1974",
"type": "string"
},
{
"name": "1975",
"type": "string"
},
{
"name": "1976",
"type": "string"
},
{
"name": "TQ",
"type": "string"
},
{
"name": "1977",
"type": "string"
},
{
"name": "1978",
"type": "string"
},
{
"name": "1979",
"type": "string"
},
{
"name": "1980",
"type": "string"
},
{
"name": "1981",
"type": "string"
},
{
"name": "1982",
"type": "string"
},
{
"name": "1983",
"type": "string"
},
{
"name": "1984",
"type": "string"
},
{
"name": "1985",
"type": "string"
},
{
"name": "1986",
"type": "string"
},
{
"name": "1987",
"type": "string"
},
{
"name": "1988",
"type": "string"
},
{
"name": "1989",
"type": "string"
},
{
"name": "1990",
"type": "string"
},
{
"name": "1991",
"type": "string"
},
{
"name": "1992",
"type": "string"
},
{
"name": "1993",
"type": "string"
},
{
"name": "1994",
"type": "string"
},
{
"name": "1995",
"type": "string"
},
{
"name": "1996",
"type": "string"
},
{
"name": "1997",
"type": "string"
},
{
"name": "1998",
"type": "string"
},
{
"name": "1999",
"type": "string"
},
{
"name": "2000",
"type": "string"
},
{
"name": "2001",
"type": "string"
},
{
"name": "2002",
"type": "string"
},
{
"name": "2003",
"type": "string"
},
{
"name": "2004",
"type": "string"
},
{
"name": "2005",
"type": "string"
},
{
"name": "2006",
"type": "string"
},
{
"name": "2007",
"type": "string"
},
{
"name": "2008",
"type": "string"
},
{
"name": "2009",
"type": "string"
},
{
"name": "2010",
"type": "string"
},
{
"name": "2011",
"type": "string"
},
{
"name": "2012",
"type": "string"
},
{
"name": "2013",
"type": "string"
},
{
"name": "2014",
"type": "string"
},
{
"name": "2015",
"type": "string"
},
{
"name": "2016",
"type": "string"
},
{
"name": "2017",
"type": "string"
},
{
"name": "2018",
"type": "string"
},
{
"name": "2019",
"type": "string"
},
{
"name": "2020",
"type": "string"
}
]
}
},
{
"name": "budgets.json",
"type": "table",
"path": "budgets.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 18079,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "budgetYear",
"type": "integer"
},
{
"name": "forecastYear",
"type": "integer"
},
{
"name": "value",
"type": "number"
}
]
}
},
{
"name": "burtin.json",
"type": "table",
"description": "The burtin.json dataset is based on graphic designer Will Burtin's 1951 visualization of antibiotic effectiveness, originally published in Scope Magazine.\n\nThe dataset compares the performance of three antibiotics against 16 different bacteria.\n\nNumerical values in the dataset represent the minimum inhibitory concentration (MIC) of each antibiotic, measured in units per milliliter, with lower values indicating higher antibiotic effectiveness.\n\nThe dataset was featured as an example in the Protovis project, a precursor to D3.js.\n\nAs noted in the Protovis example, \"Recreating this display revealed some minor errors in the original: a missing grid line at 0.01 μg/ml, and an exaggeration of some values for penicillin\".\n\nThe vega-datsets version is largely consistent with the Protovis version of the dataset, with one correction (changing 'Brucella antracis' to the correct 'Bacillus anthracis') and the addition of a new column, 'Genus', to group related bacterial species together.\n\nThe caption of the original 1951 [visualization](https://graphicdesignarchives.org/wp-content/uploads/wmgda_8616c.jpg) \nreads as follows:\n\n> ## Antibacterial ranges of Neomycin, Penicillin and Streptomycin\n>\n>\n> The chart compares the in vitro sensitivities to neomycin of some of the common pathogens (gram+ in red and gram- in blue) with their sensitivities to penicillin, and streptomycin.\n>\n> The effectiveness of the antibiotics is expressed as the highest dilution in μ/ml. which inhibits the test organism.\n>\n> High dilutions are toward the periphery; consequently the length of the colored bar is proportional to the effectiveness.\n>\n> It is apparent that neomycin is especially effective against Staph. albus and aureus, Streph. fecalis, A. aerogenes, S. typhosa, E. coli, Ps. aeruginosa, Br. abortus, K. pneumoniae, Pr. vulgaris, S. schottmuelleri and M. tuberculosis.\n>\n> Unfortunately, some strains of proteus, pseudomonas and hemolytic streptococcus are resistant to neomycin, although the majority of these are sensitive to neomycin.\n>\n> It also inhibits actinomycetes, but is inactive against viruses and fungi. Its mode of action is not understood.\n",
"sources": [
{
"title": "Scope Magazine",
"path": "https://graphicdesignarchives.org/projects/scope-magazine-vol-iii-5/"
},
{
"title": "Protovis Antibiotics Example",
"path": "https://mbostock.github.io/protovis/ex/antibiotics-burtin.html"
}
],
"path": "burtin.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 2743,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "Bacteria",
"type": "string"
},
{
"name": "Penicillin",
"type": "number"
},
{
"name": "Streptomycin",
"type": "number"
},
{
"name": "Neomycin",
"type": "number"
},
{
"name": "Gram_Staining",
"type": "string"
},
{
"name": "Genus",
"type": "string"
}
]
}
},
{
"name": "cars.json",
"type": "table",
"description": "Collection of car specifications and performance metrics from various automobile manufacturers.",
"sources": [
{
"title": "StatLib Datasets Archive",
"path": "http://lib.stat.cmu.edu/datasets/"
}
],
"path": "cars.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 100492,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "Name",
"type": "string"
},
{
"name": "Miles_per_Gallon",
"type": "integer"
},
{
"name": "Cylinders",
"type": "integer"
},
{
"name": "Displacement",
"type": "number"
},
{
"name": "Horsepower",
"type": "integer"
},
{
"name": "Weight_in_lbs",
"type": "integer"
},
{
"name": "Acceleration",
"type": "number"
},
{
"name": "Year",
"type": "date"
},
{
"name": "Origin",
"type": "string"
}
]
}
},
{
"name": "co2-concentration.csv",
"type": "table",
"description": "Scripps CO2 program data ut modified to only include date, CO2, seasonally adjusted CO2. \nOnly includes rows with valid data.",
"sources": [
{
"title": "Scripps CO2 Program",
"path": "https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record"
}
],
"path": "co2-concentration.csv",
"scheme": "file",
"format": "csv",
"mediatype": "text/csv",
"encoding": "utf-8",
"bytes": 18547,
"schema": {
"fields": [
{
"name": "Date",
"type": "date"
},
{
"name": "CO2",
"type": "number"
},
{
"name": "adjusted CO2",
"type": "number"
}
]
}
},
{
"name": "countries.json",
"type": "table",
"description": "This dataset combines key demographic indicators (life expectancy at birth and\nfertility rate measured as babies per woman) for various countries from 1955 to 2000 at 5-year\nintervals. It includes both current values and adjacent time period values (previous and next)\nfor each indicator. Gapminder's [data documentation](https://www.gapminder.org/data/documentation/) \nnotes that its philosophy is to fill data gaps with estimates and use current\ngeographic boundaries for historical data. Gapminder states that it aims to \"show people the\nbig picture\" rather than support detailed numeric analysis.",
"licenses": [
{
"title": "Creative Commons Attribution 4.0 International",
"path": "https://www.gapminder.org/free-material/"
}
],
"sources": [
{
"title": "Gapminder Foundation - Life Expectancy",
"path": "https://docs.google.com/spreadsheets/d/1RehxZjXd7_rG8v2pJYV6aY0J3LAsgUPDQnbY4dRdiSs/edit?gid=176703676#gid=176703676",
"version": "14"
},
{
"title": "Gapminder Foundation - Fertility",
"path": "https://docs.google.com/spreadsheets/d/1aLtIpAWvDGGa9k2XXEz6hZugWn0wCd5nmzaRPPjbYNA/edit?gid=176703676#gid=176703676",
"version": "14"
}
],
"path": "countries.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 99457,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "_comment",
"type": "string"
},
{
"name": "year",
"type": "integer",
"description": "Years from 1955 to 2000 at 5-year intervals"
},
{
"name": "fertility",
"type": "number",
"description": "Fertility rate (average number of children per woman) for the given year"
},
{
"name": "life_expect",
"type": "number",
"description": "Life expectancy in years for the given year"
},
{
"name": "n_fertility",
"type": "number",
"description": "Fertility rate for the next 5-year interval"
},
{
"name": "n_life_expect",
"type": "number",
"description": "Life expectancy for the next 5-year interval"
},
{
"name": "country",
"type": "string",
"description": "Name of the country"
}
]
}
},
{
"name": "crimea.json",
"type": "table",
"description": "This dataset, which informed Florence Nightingale's groundbreaking work in public health, details \nmonthly mortality rates from British military hospitals during the Crimean War (1854-1856). \n\nNightingale credits Dr. William Farr for compiling the data from the 1858 [Medical and Surgical \nHistory of the British Army](http://resource.nlm.nih.gov/62510370R). The dataset categorizes \ndeaths into \"zymotic\" diseases (preventable infectious diseases), wounds/injuries, and other causes. \nCovering the period from April 1854 to March 1856, the dataset includes monthly army strength \nalongside mortality figures. Nightingale transformed this data into her now-famous [polar area \ndiagrams](https://iiif.lib.harvard.edu/manifests/view/drs:7420433$25i). \n\nThe annual mortality rates plotted in the chart can be calculated from the dataset using the formula \n> (Deaths × 1000 × 12) ÷ Army Size. \n\nAs [The Lancet](https://pmc.ncbi.nlm.nih.gov/articles/PMC7252134/) argued in 2020, Nightingale's \ninnovative visualizations proved that \"far more men died of disease, infection, and exposure \nthan in battle—a fact that shocked the British nation.\" Her work also vividly illustrated \nthe dramatic impact of sanitary reforms, particularly in reducing preventable deaths.",
"sources": [
{
"title": "Nightingale, Florence. A contribution to the sanitary history of the British army during the late war with Russia. London : John W. Parker and Son, 1859. Table II. Table showing the Estimated Average Monthly Strength of the Army; and the Deaths and Annual Rate of Mortality per 1,000 in each month, from April 1854, to March 1856 (inclusive), in the Hospitals of the Army in the East.\n",
"path": "https://nrs.lib.harvard.edu/urn-3:hms.count:1177146?n=21"
}
],
"path": "crimea.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 2183,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "date",
"type": "date",
"description": "First day of each month during the observation period, in ISO 8601 format (YYYY-MM-DD)"
},
{
"name": "wounds",
"type": "integer",
"description": "Deaths from \"Wounds and Injuries\" which comprised: Luxatio (dislocation), Sub-Luxatio (partial dislocation), Vulnus Sclopitorum (gunshot wounds), Vulnus Incisum (incised wounds), Contusio (bruising), Fractura (fractures), Ambustio (burns) and Concussio-Cerebri (brain concussion)\n"
},
{
"name": "other",
"type": "integer",
"description": "Deaths from All Other Causes"
},
{
"name": "disease",
"type": "integer",
"description": "Deaths from Zymotic Diseases (preventable infectious diseases)"
},
{
"name": "army_size",
"type": "integer",
"description": "Estimated Average Monthly Strength of the Army"
}
]
}
},
{
"name": "disasters.csv",
"type": "table",
"description": "Annual number of deaths from disasters.",
"sources": [
{
"title": "Our World in Data - Natural Catastrophes",
"path": "https://ourworldindata.org/natural-catastrophes"
}
],
"path": "disasters.csv",
"scheme": "file",
"format": "csv",
"mediatype": "text/csv",
"encoding": "utf-8",
"bytes": 18840,
"schema": {
"fields": [
{
"name": "Entity",
"type": "string"
},
{
"name": "Year",
"type": "integer"
},
{
"name": "Deaths",
"type": "integer"
}
]
}
},
{
"name": "driving.json",
"type": "table",
"sources": [
{
"title": "New York Times",
"path": "https://archive.nytimes.com/www.nytimes.com/imagepages/2010/05/02/business/02metrics.html"
}
],
"path": "driving.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 3461,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "side",
"type": "string"
},
{
"name": "year",
"type": "integer"
},
{
"name": "miles",
"type": "integer"
},
{
"name": "gas",
"type": "number"
}
]
}
},
{
"name": "earthquakes.json",
"type": "json",
"description": "Earthquake data retrieved Feb 6, 2018",
"sources": [
{
"title": "USGS Earthquake Feed",
"path": "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_week.geojson"
}
],
"path": "earthquakes.json",
"scheme": "file",
"format": "geojson",
"mediatype": "text/geojson",
"encoding": "utf-8",
"bytes": 1219853
},
{
"name": "ffox.png",
"type": "file",
"description": "Application icons from open-source software projects.",
"path": "ffox.png",
"scheme": "file",
"format": "png",
"mediatype": "image/png",
"encoding": "utf-8",
"bytes": 17628
},
{
"name": "flare-dependencies.json",
"type": "table",
"path": "flare-dependencies.json",
"scheme": "file",
"format": "json",
"mediatype": "text/json",
"encoding": "utf-8",
"bytes": 34600,
"dialect": {
"json": {
"keyed": true
}
},
"schema": {
"fields": [
{
"name": "source",
"type": "integer"
},
{
"name": "target",
"type": "integer"
}
]
}
},
{
"name": "flare.json",
"type": "table",
"path": "flare.json",
"scheme": "file",