-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheval.py
91 lines (79 loc) · 3.17 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import print_function
import torch
from torchvision import datasets, models, transforms
from torchvision import transforms
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
import torch.optim as optim
import torch.nn as nn
from torch import np
import utils
from data_loader import get_coco_data_loader, get_basic_loader
from models import CNN, RNN
from vocab import Vocabulary, load_vocab
import os
def main(args):
# hyperparameters
batch_size = args.batch_size
num_workers = 2
# Image Preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
vocab = load_vocab()
loader = get_basic_loader(dir_path=os.path.join(args.image_path),
transform=transform,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers)
# Build the models
embed_size = args.embed_size
num_hiddens = args.num_hidden
checkpoint_path = 'checkpoints'
encoder = CNN(embed_size)
decoder = RNN(embed_size, num_hiddens, len(vocab), 1, rec_unit=args.rec_unit)
encoder_state_dict, decoder_state_dict, optimizer, *meta = utils.load_models(args.checkpoint_file)
encoder.load_state_dict(encoder_state_dict)
decoder.load_state_dict(decoder_state_dict)
if torch.cuda.is_available():
encoder.cuda()
decoder.cuda()
# Train the Models
try:
results = []
for step, (images, image_ids) in enumerate(loader):
images = utils.to_var(images, volatile=True)
features = encoder(images)
captions = decoder.sample(features)
captions = captions.cpu().data.numpy()
captions = [utils.convert_back_to_text(cap, vocab) for cap in captions]
captions_formatted = [{'image_id': int(img_id), 'caption': cap} for img_id, cap in zip(image_ids, captions)]
results.extend(captions_formatted)
print('Sample:', captions_formatted)
except KeyboardInterrupt:
print('Ok bye!')
finally:
import json
file_name = 'captions_model.json'
with open(file_name, 'w') as f:
json.dump(results, f)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_file', type=str,
default=None, help='path to saved checkpoint')
parser.add_argument('--batch_size', type=int,
default=128, help='size of batches')
parser.add_argument('--rec_unit', type=str,
default='gru', help='choose "gru", "lstm" or "elman"')
parser.add_argument('--image_path', type=str,
default='data/test2014', help='path to the directory of images')
parser.add_argument('--embed_size', type=int,
default='512', help='number of embeddings')
parser.add_argument('--num_hidden', type=int,
default='512', help='number of embeddings')
args = parser.parse_args()
main(args)