-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGLIP_utils.py
70 lines (59 loc) · 2.26 KB
/
GLIP_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import os
import requests
from io import BytesIO
from PIL import Image
import time
import numpy as np
pylab.rcParams['figure.figsize'] = 20, 12
from GLIP.maskrcnn_benchmark.config import cfg
from GLIP.maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
class GLIP:
def __init__(self, size=None):
self.GLIP = self.setup(size)
def load(self, url):
"""
Given an url of an image, downloads the image and
returns a PIL image
"""
response = requests.get(url)
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
# convert to BGR format
image = np.array(pil_image)[:, :, [2, 1, 0]]
return image
def imshow(self, img, caption):
plt.imshow(img[:, :, [2, 1, 0]])
plt.axis("off")
plt.figtext(0.5, 0.09, caption, wrap=True, horizontalalignment='center', fontsize=20)
plt.savefig(f"GLIP/testing/{time.time()}.png")
def setup(self, size='L'):
if size == 'S':
# Use this command for evaluate the GLPT-T model
config_file = "GLIP/configs/pretrain/glip_Swin_T_O365_GoldG.yaml"
weight_file = "GLIP/MODEL/glip_tiny_model_o365_goldg_cc_sbu.pth"
else:
config_file = "GLIP/configs/pretrain/glip_Swin_L.yaml"
weight_file = "GLIP/MODEL/glip_large_model.pth"
# Tokenizers cannot parallelize with dataloaders
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# update the config options with the config file
# manual override some options
cfg.local_rank = 0
cfg.num_gpus = 1
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", "cuda"])
glip_demo = GLIPDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
show_mask_heatmaps=False
)
return glip_demo
def run(self, image, caption, thresh=0.7, save=False):
result = self.GLIP.inference(image, caption)
if save:
res_image, result = self.GLIP.run_on_web_image(image, caption, thresh)
self.imshow(res_image, caption)
return result