-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart2_code.py
253 lines (178 loc) · 9.47 KB
/
part2_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import imageio.v2 as imageio
import time
from part1_code import *
def get_rays(height, width, intrinsics, Rcw, Tcw):
"""
Compute the origin and direction of rays passing through all pixels of an image (one ray per pixel).
Args:
height: the height of an image.
width: the width of an image.
intrinsics: camera intrinsics matrix of shape (3, 3).
Rcw: Rotation matrix of shape (3,3) from camera to world coordinates.
Tcw: Translation vector of shape (3,1) that transforms
Returns:
ray_origins (torch.Tensor): A tensor of shape (height, width, 3) denoting the centers of
each ray. Note that desipte that all ray share the same origin, here we ask you to return
the ray origin for each ray as (height, width, 3).
ray_directions (torch.Tensor): A tensor of shape (height, width, 3) denoting the
direction of each ray.
"""
device = intrinsics.device
ray_directions = torch.zeros((height, width, 3), device=device) # placeholder
ray_origins = torch.zeros((height, width, 3), device=device) # placeholder
############################# TODO 2.1 BEGIN ##########################
u = torch.arange(width) # this is 100
v = torch.arange(height)
v_grid, u_grid = torch.meshgrid(u, v)
ones = torch.ones((height, width, 1))
coords_tensor = torch.cat([u_grid[..., None], v_grid[..., None], ones], dim=-1)
pixels = coords_tensor.reshape(height*width, 3).T
K_inv = torch.inverse(intrinsics)
rays_camera = torch.matmul(K_inv, pixels)
ray_directions = torch.matmul(Rcw, rays_camera).T.reshape(height, width, 3)
ray_origins = torch.tile(Tcw.reshape(1, 3), (height, height, 1))
############################# TODO 2.1 END ############################
return ray_origins, ray_directions
def stratified_sampling(ray_origins, ray_directions, near, far, samples):
"""
Sample 3D points on the given rays. The near and far variables indicate the bounds of sampling range.
Args:
ray_origins: Origin of each ray in the "bundle" as returned by the
get_rays() function. Shape: (height, width, 3).
ray_directions: Direction of each ray in the "bundle" as returned by the
get_rays() function. Shape: (height, width, 3).
near: The 'near' extent of the bounding volume.
far: The 'far' extent of the bounding volume.
samples: Number of samples to be drawn along each ray.
Returns:
ray_points: Query 3D points along each ray. Shape: (height, width, samples, 3).
depth_points: Sampled depth values along each ray. Shape: (height, width, samples).
"""
############################# TODO 2.2 BEGIN ############################
H, W = ray_origins.shape[:2]
N = samples
# Generate stratified samples
t = (torch.rand(H, W, samples, device=ray_origins.device)\
+ torch.arange(samples, device=ray_origins.device)) / (samples + 1e-6)
t = t.expand(H, W, samples)
depth_points = near*(1.0-t) + far*t
ray_points = ray_origins[..., None, :] + depth_points[..., None] * ray_directions[..., None, :]
############################# TODO 2.2 END ############################
return ray_points, depth_points
class nerf_model(nn.Module):
"""
Define a NeRF model comprising eight fully connected layers and following the
architecture described in the NeRF paper.
"""
def __init__(self, filter_size=256, num_x_frequencies=6, num_d_frequencies=3):
super().__init__()
############################# TODO 2.3 BEGIN ############################
n_gamma_x = 3 + 2*3*num_x_frequencies #(2DL: D= dimension of the input, L= no of frequency)
n_gamma_d = 3 + 2*3*num_d_frequencies
# Regular layers:
self.layer_1 = nn.Linear(n_gamma_x, filter_size) # 1st linear layer
self.layer_2 = nn.Linear(filter_size, filter_size) # 2nd linear layer
self.layer_3 = nn.Linear(filter_size, filter_size) # 3rd linear layer
self.layer_4 = nn.Linear(filter_size, filter_size) # 4th linear layer
self.layer_5 = nn.Linear(filter_size, filter_size) # 5th linear layer
# Concatenate the input pos with fifth layer and pass it to sixth layer. ?
self.layer_6 = nn.Linear(filter_size + n_gamma_x, filter_size) # 6th linear layer
self.layer_7 = nn.Linear(filter_size, filter_size) # 7th linear layer
self.layer_8 = nn.Linear(filter_size, filter_size) # 8th linear layer
# Get density: sigma (a scalar value) as the output of 9th layer
self.layer_9 = nn.Linear(filter_size, 1) # 9th linear layer
# Regular layers
self.layer_10 = nn.Linear(filter_size, filter_size) # 10th linear layer
# Concatenate input direction with tenth layer and pass it to eleventh layer. ?
self.layer_11 = nn.Linear(filter_size + n_gamma_d, 128) # 11th linear layer
self.layer_12 = nn.Linear(128, 3)
############################# TODO 2.3 END ############################
def forward(self, x, d):
############################# TODO 2.3 BEGIN ############################
# Regular layers:
l_1 = F.relu(self.layer_1(x))
l_2 = F.relu(self.layer_2(l_1))
l_3 = F.relu(self.layer_3(l_2))
l_4 = F.relu(self.layer_4(l_3))
l_5 = F.relu(self.layer_5(l_4))
# Concatenate l5 with input again:
l_5_cat = torch.cat([l_5, x], dim=-1)
#Regular layers:
l_6 = F.relu(self.layer_6(l_5_cat))
l_7 = F.relu(self.layer_7(l_6))
l_8 = F.relu(self.layer_8(l_7))
# Get sigma from eighth layer:
sigma = self.layer_9(l_8)
# Regular layers: No activation!
l_10 = self.layer_10(l_8)
# Concatenate input direction with tenth layer and pass it to eleventh layer.
l_10_cat = torch.cat([l_10, d], dim=-1)
l_11 = F.relu(self.layer_11(l_10_cat))
# Get rgb:
rgb = torch.sigmoid(self.layer_12(l_11))
############################# TODO 2.3 END ############################
return rgb, sigma
def get_batches(ray_points, ray_directions, num_x_frequencies, num_d_frequencies):
def get_chunks(inputs, chunksize = 2**15):
return [inputs[i:i + chunksize] for i in range(0, inputs.shape[0], chunksize)]
"""
This function returns chunks of the ray points and directions to avoid memory errors with the
neural network. It also applies positional encoding to the input points and directions before
dividing them into chunks, as well as normalizing and populating the directions.
"""
############################# TODO 2.3 BEGIN ############################
# normalize directions
ray_directions_norm = ray_directions / torch.norm(ray_directions, dim=-1, keepdim=True)
# repeat directions for every point
ray_directions_pop = ray_directions_norm.unsqueeze(-2).repeat(1, 1, ray_points.shape[2], 1)
# flatten vectors
ray_points_flat = ray_points.view(-1, 3) #(H * W * N of samples, 3)
ray_directions_flat = ray_directions_pop.view(-1, 3) #(H * W * N of samples, 3)
# Apply positional encoding:
en_ray_directions_flat = positional_encoding(ray_directions_flat, num_d_frequencies)
en_ray_points_flat = positional_encoding(ray_points_flat, num_x_frequencies)
# Call the get_chunks function:
ray_points_batches = get_chunks(en_ray_points_flat)
ray_directions_batches = get_chunks(en_ray_directions_flat)
############################# TODO 2.3 END ############################
return ray_points_batches, ray_directions_batches
def volumetric_rendering(rgb, s, depth_points):
"""
Differentiably renders a radiance field, given the origin of each ray in the
"bundle", and the sampled depth values along them.
Args:
rgb: RGB color at each query location (X, Y, Z). Shape: (height, width, samples, 3).
sigma: Volume density at each query location (X, Y, Z). Shape: (height, width, samples).
depth_points: Sampled depth values along each ray. Shape: (height, width, samples).
Returns:
rec_image: The reconstructed image after applying the volumetric rendering to every pixel.
Shape: (height, width, 3)
"""
############################# TODO 2.4 BEGIN ############################
device = rgb.device
# Transmittance:
delta = torch.ones_like(depth_points).to(device) * (1e09)
delta[...,:-1] = torch.diff(depth_points, dim=-1)
sigma_dot_delta = - F.relu(s) * delta.reshape_as(s)
T = torch.cumprod(torch.exp(sigma_dot_delta), dim = -1)
T = torch.roll(T,1,dims=-1)
# Apply the volumetric rendering equation to each ray:
C = ((T * (1 - torch.exp(sigma_dot_delta)))[..., None]) * rgb
rec_image = torch.sum(C, dim=-2)
############################# TODO 2.4 END ############################
return rec_image
def one_forward_pass(height, width, intrinsics, pose, near, far, samples, model, num_x_frequencies, num_d_frequencies):
############################# TODO 2.5 BEGIN ############################
#compute all the rays from the image
#sample the points from the rays
#divide data into batches to avoid memory errors
#forward pass the batches and concatenate the outputs at the end
# Apply volumetric rendering to obtain the reconstructed image
############################# TODO 2.5 END ############################
return rec_image