-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathxval.m
181 lines (168 loc) · 5.31 KB
/
xval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function option = xval(Y, opts)
% XVAL: algorithm performs cross-validation for one lagrangian multiplier
% for the nnmf problem defined by Y,n and opts.
%
% Input:
% opts options to be modified by xval
% Y movie
% struct opts.xval:
% opts.xval.im_size size of the std_image of Y
% opts.xval.max_iter maximal number of iterations of the nnmf inside xval
% opts.xval.num_part number of partitions in which the data is decomposed
% opts.xval.std_image required; standard deviation image of Y
% opts.multiplier string; name of the lagrangian multiplier
% example opts.multiplier='lamb_orth_L2'
% opts.param paramter range of the multiplier that needs to be
% scanned by xval
%
% Output:
% options output options
%%
if nargin<2
opts=struct;
opts.xval=struct;
end
if ~isfield(opts.xval,'im_size')
opts.xval.im_size = 100;
end
if ~isfield(opts.xval,'max_iter')
opts.xval.max_iter=opts.max_iter;
end
if ~isfield(opts.xval,'num_part')
opts.xval.num_part=5;
end
if ~isfield(opts.xval,'num_part')
opts.xval.num_part=5;
end
if ~isfield(opts.xval,'multiplier')
opts.xval.multiplier='lamb_orth_L1';
end
switch opts.xval.multiplier
case 'lamb_orth_L1'
lambda = opts.lamb_orth_L1;
disp('lamb_orth_L1');
case 'lamb_orth_L2'
lambda = opts.lamb_orth_L2;
disp('lamb_orth_L2');
case 'lamb_spat'
lambda = opts.lamb_spat;
disp('lamb_spat');
case 'lamb_temp'
lambda = opts.lamb_temp;
disp('lamb_temp');
case 'lamb_corr'
lambda = opts.lamb_corr;
disp('lamb_corr');
case 'lamb_spat_TV'
lambda = opts.lamb_spat_TV;
disp('lamb_spat_TV');
case 'lamb_temp_TV'
lambda = opts.temp_TV;
disp('lamb_temp_TV');
end
if ~isfield(opts.xval,'param') || isempty(opts.xval.param)
opts.xval.param = lambda * exp(-2 * (0:4));
end
map = conv2(opts.xval.std_image.^2,ones(opts.xval.im_size+1),'valid');
[~,m] = max(map(:));
[c_x,c_y] = ind2sub(size(map),m);
[cx,cy] = meshgrid(c_y:c_y+opts.xval.im_size,c_x:c_x+opts.xval.im_size);
ind = sub2ind(size(opts.xval.std_image),cx(:),cy(:));
Y_p = Y(ind,:);
option=opts;
option.diagnostic = false;
option.max_iter=2000;
option.active = reshape(opts.active,size(opts.xval.std_image));
option.active = option.active(c_y:c_y+opts.xval.im_size,c_x:c_x+opts.xval.im_size);
[t,s] = initialize_nnmf(Y_p,opts.rank,option);
option.max_iter=opts.max_iter;
if opts.lamb_orth_L2 + opts.lamb_orth_L2
for u=1:size(t,1)
platz = norm(s(:,u));
t(u,:) = t(u,:)*platz;
s(:,u) = s(:,u)/platz;
end
end
[N,~] = discretize([1:size(Y_p,2)],opts.xval.num_part);
for j=1:length(opts.xval.param)
for k=1:opts.xval.num_part
T=t(:,k~=N); S=s;
if j==1
yy{k}=Y_p(:,k==N);
y{k}=Y_p(:,k~=N);
if opts.use_std
yy{k}=yy{k}/sqrt(sum(var(yy{k},1,2)));
y{k}=y{k}/sqrt(sum(var(y{k},1,2)));
else
yy{k}=yy{k}/norm(reshape(yy{k},1,[]));
y{k}=y{k}/norm(reshape(y{k},1,[]));
end
end
option.Y = sum(y{k},2);
lambda = opts.xval.param(j);
switch opts.xval.multiplier
case 'lamb_orth_L1'
option.lamb_orth_L1 = lambda;
case 'lamb_orth_L2'
option.lamb_orth_L2 = lambda;
case 'lamb_spat'
option.lamb_spat = lambda;
case 'lamb_temp'
option.lamb_temp = lambda;
case 'lamb_corr'
option.lamb_corr = lambda;
case 'lamb_spat_TV'
option.lamb_spat_TV = lambda;
case 'lamb_temp_TV'
option.temp_TV = lambda;
end
for iter=1:opts.xval.max_iter
[S,T]=S_update(y{k},S,T,option);
[S,T]=T_update(y{k},T,S,option);
end
for u=1:size(T,1)
platz = norm(S(:,u));
T(u,:) = T(u,:)*platz;
S(:,u) = S(:,u)/platz;
end
T(isnan(T))=0;
S(isnan(S))=0;
T = LS_nnls(S,yy{k},option);
if opts.use_std
E(k) = sqrt(sum(var(S*T-yy{k},1,2),1));
else
E(k) = norm(reshape(S*T-yy{k},1,[]));
end
end
disp(j);
E_(j) = mean(E);
disp(E_(j));
end
[~,n_] = min(E_);
option = opts;
switch opts.xval.multiplier
case 'lamb_orth_L1'
option.lamb_orth_L1 = option.lamb_orth_L1*exp(-2*(n_-1));
disp(option.lamb_orth_L1);
case 'lamb_orth_L2'
option.lamb_orth_L2 = option.lamb_orth_L2*exp(-2*(n_-1));
disp(option.lamb_orth_L2);
case 'lamb_spat'
option.lamb_spat = option.lamb_spat*exp(-2*(n_-1));
disp(option.lamb_spat);
case 'lamb_temp'
option.lamb_temp = option.lamb_temp*exp(-2*(n_-1));
disp(option.lamb_temp);
case 'lamb_corr'
option.lamb_corr = option.lamb_corr*exp(-2*(n_-1));
disp(option.lamb_corr);
case 'lamb_spat_TV'
option.lamb_spat_TV = option.lamb_spat_TV*exp(-2*(n_-1));
disp(option.lamb_spat_TV);
case 'lamb_temp_TV'
option.lamb_temp_TV = option.lamb_temp_TV*exp(-2*(n_-1));
disp(option.lamb_temp_TV);
end
figure(5);title('Generalization error');plot(opts.xval.param,E_)
drawnow expose
end