forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOptions Straddle backtest.py
315 lines (226 loc) · 10.9 KB
/
Options Straddle backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# coding: utf-8
# In[1]:
#after a long while of struggle, i finally decided to write something on options strategy
#the biggest issue of options trading is to find the backtesting data
#the most difficult part is options greeks
#after all, data is the new black gold
#here are a couple of websites u can try your luck
#currently they offer free trial for a limited period
# http://base2.optionsdatamine.com/page.php
# https://www.historicaloptiondata.com/
#in order to save u guys from the hassle, I also include a small dataset of stoxx 50 index
#the dataset has 3 spreadsheets, the spot spreadsheet refers to spot price of stoxx 50
#aug spreadsheet refers to options settle at august 2019
#jul spreadsheet refers to options settle at july 2019
# https://github.com/je-suis-tm/quant-trading/tree/master/data
#if you dont know what options straddle is
#i recommend u to read a tutorial from fidelity
#who else can explain the concept of options than one of the largest mutual funds
# https://www.fidelity.com/learning-center/investment-products/options/options-strategy-guide/long-straddle
#in simple words, options are a financial derivative
#that enables u to trade underlying asset at certain price in the future
#and options straddle enable you to profit from a certain level of volatility
#in this script, we are only gonna talk about long straddle
#basically long straddle implies buy call option and put option of same strike price and same strike date
#preferably at the same option price as well
#otherwise asymmetric option price means there is more one-sided risk than the other
#you may wanna consider strangle or strap/strip in this case
#short straddle is literally shorting call option and put option of the same strike price and the same strike date
#preferably at the same option price as well
#long straddle has unlimited profit for upside movement and limited loss
#short straddle has unlimited loss for upside movement and limited profit
#short straddle is commonly used in a sideway market
#long straddle is commonly used in event driven strategy
#for instance, brexit on 30th of October 2019, its do or die, no ifs and buts
#if bojo delivers a no-deal Brexit, uk sterling gonna sink
#or he secures a new deal without backstop from macron and merkel
#even though unlikely, uk sterling gonna spike
#or he has to postpone and look like an idiot, uk sterling still gonna surge
#either way, there will be a lot of volatility around that particular date
#to secure a profit from either direction, that is when options straddle kick in
#but hey, options are 3 dimensional
#apart from strike date, option price, which strike price should we pick
#well, that is a one million us dollar question
#who says quantitative trading is about algos and calculus?
#this is when u need to consult with some economists to get a base case
#their fundamental analysis will determine your best/worst scenario
#therefore, u can pick a good strike price to maximize your profit
#or the simplest way is to find a strike price closer to the current spot price
#nevertheless, as u can see in our stoxx 50 dataset
#not all strike price offer both call and put options
#and even if they offer both, the price of options may be very different
#there could be more upside/downside from the market consensus
#we can pick the options which offer both call and put options
#and we only trade when both option prices are converging
#and please don’t arrogantly believe that you outsmart the rest of the players in the market
#all the information you have obtained from any tips may have already been priced in
#finding a good pair of call and put options at the same strike price,
#the same strike date and almost the same price is tough
#to make our life easier, we only consider european options with cash settlement in this script
import os
os.chdir('d:/')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
# In[2]:
#as we have gathered all the available call and put options
#this function will only extract strike price existing in both call and put options
#this is a fundamental requirement of options straddle
def find_strike_price(df):
temp=[re.search('\d{4}',i).group() for i in df.columns]
target=[]
for i in set(temp):
if temp.count(i)>1:
target.append(i)
return target
# In[3]:
#this function is merely data cleansing
#merging option price information with spot price
def straddle(options,spot,contractsize,strikeprice):
option=options[[i for i in options.columns if strikeprice in i]]
df=pd.merge(spot,option,left_index=True,right_index=True)
temp=[]
for i in df.columns:
if 'C'+strikeprice in i:
temp.append('call')
elif 'P'+strikeprice in i:
temp.append('put')
elif 'Index' in i:
temp.append('spot')
else:
temp.append(i)
df.columns=temp
#we multiply contract size with spot price here
#it makes our life a lot easier later with visualization
df['spot']=df['spot'].apply(lambda x:x*contractsize)
return df
# In[4]:
#signal generation is actually very simple
#just find the option pair at the closest price we can
def signal_generation(df,threshold):
df['signals']=np.where(
np.abs(
df['call']-df['put'])<threshold,
1,0)
return df
# In[5]:
#ploting the payoff diagram
def plot(df,strikeprice,contractsize):
#finding trading signal
#if no signal is found
#we declare no suitable entry point for options straddle
ind=df[df['signals']!=0].index
if ind.empty:
print('Strike Price at',strikeprice,'\nNo trades available.\n')
return
#calculate how much profit we can gain outta this
profit=np.abs(
df['spot'].iloc[-1]-int(strikeprice)*contractsize
)-df['call'][ind[0]]-df['put'][ind[0]]
y=[]
#we use these two variables to plot how much we can profit at different spot price
begin=round(int(strikeprice)*contractsize-5*(df['call'][ind[0]]+df['put'][ind[0]]),0)
end=round(int(strikeprice)*contractsize+5*(df['call'][ind[0]]+df['put'][ind[0]]),0)+1
x=list(np.arange(int(begin),int(end)))
#as u can see from the pic
# https://github.com/je-suis-tm/quant-trading/blob/master/preview/options%20straddle%20payoff%20diagram.png
#we only make money (green color) if the spot price is outside of a range
#group1 and group2 are variables that indicate which range our line plot gets red/green color
#they keep track of the indices that we switch from profit to loss or from loss to profit
#as indices are always positive, we initialize them to negative values
group1,group2=-10,-10
for j in x:
temp=np.abs(j-int(strikeprice)*contractsize)-(df['call'][ind[0]]+df['put'][ind[0]])
y.append(temp)
if temp<0 and group1<0:
group1=x.index(j)
if temp>0 and group1>0 and group2<0:
group2=x.index(j)
ax=plt.figure(figsize=(10,5)).add_subplot(111)
ax.spines['bottom'].set_position(('data',0))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
#pnl in different colors, red is loss, green is profit
plt.plot(x[:group1],y[:group1],c='#57bc90',lw=5)
plt.plot(x[group2:],y[group2:],c='#57bc90',lw=5)
plt.plot(x[group1:group2],y[group1:group2],c='#ec576b',lw=5)
#ploting strike price
plt.plot([int(strikeprice)*contractsize,
int(strikeprice)*contractsize],
[0,-(df['call'][ind[0]]+df['put'][ind[0]])],
linestyle=':',lw=3,c='#ec576b',alpha=0.5)
#ploting spot price
plt.axvline(df['spot'].iloc[-1],lw=5,
linestyle='--',c='#e5e338',alpha=0.5)
#adding annotations
plt.annotate('Strike Price',
xy=(int(strikeprice)*contractsize,
0),
xytext=(int(strikeprice)*contractsize,
df['call'][ind[0]]+df['put'][ind[0]]),
arrowprops=dict(arrowstyle='simple',
facecolor='#c5c1c0',),
va='center',ha='center'
)
plt.annotate('Lower Breakeven Point',
xy=(int(strikeprice)*contractsize-(df['call'][ind[0]]+df['put'][ind[0]]),
0),
xytext=(int(strikeprice)*contractsize-1.5*(df['call'][ind[0]]+df['put'][ind[0]]),
-df['call'][ind[0]]-df['put'][ind[0]]),
arrowprops=dict(arrowstyle='simple',
facecolor='#c5c1c0'),
va='center',ha='center'
)
plt.annotate('Upper Breakeven Point',
xy=(int(strikeprice)*contractsize+(df['call'][ind[0]]+df['put'][ind[0]]),
0),
xytext=(int(strikeprice)*contractsize+1.5*(df['call'][ind[0]]+df['put'][ind[0]]),
-df['call'][ind[0]]-df['put'][ind[0]]),
arrowprops=dict(arrowstyle='simple',
facecolor='#c5c1c0'),
va='center',ha='center'
)
plt.annotate('Spot Price',
xy=(df['spot'].iloc[-1],
2*(df['call'][ind[0]]+df['put'][ind[0]])),
xytext=(df['spot'].iloc[-1]*1.003,
2*(df['call'][ind[0]]+df['put'][ind[0]])),
arrowprops=dict(arrowstyle='simple',
facecolor='#c5c1c0'),
va='center',ha='left'
)
#limit x ticks to 3 for a tidy look
plt.locator_params(axis='x',nbins=3)
plt.title(f'Long Straddle Options Strategy\nP&L {round(profit,2)}')
plt.ylabel('Profit & Loss')
plt.xlabel('Price',labelpad=50)
plt.show()
# In[6]:
#for stoxx 50 options, the contract size is 10 ticks per euro
contractsize=10
#the threshold determines the price disparity between call and put options
#the same call and put option price for the same strike price and the same strike date
#only exists in an ideal world, in reality, it is like royal flush
#when the price difference of call and put is smaller than 2 euros
#we consider them identically the same option price
threshold=2
# In[7]:
def main():
data=pd.ExcelFile('stoxx50.xlsx')
aug=data.parse('aug')
aug.set_index('Dates',inplace=True)
aug.index=pd.to_datetime(aug.index)
spot=data.parse('spot')
spot.set_index('Dates',inplace=True)
spot.index=pd.to_datetime(spot.index)
target=find_strike_price(aug)
#we iterate through all the available option pairs
#to find the optimal strike price to maximize our profit
for strikeprice in target:
df=straddle(aug,spot,contractsize,strikeprice)
signal=signal_generation(df,threshold)
plot(signal,strikeprice,contractsize)
# In[8]:
if __name__ == '__main__':
main()