forked from bwlewis/rthreejs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglobe.R
251 lines (247 loc) · 10.1 KB
/
globe.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#' Plot Data on 3D Globes
#'
#' Plot points, arcs and images on a globe in 3D using Three.js. The globe
#' can be rotated and and zoomed.
#'
#' @param img A character string representing a file path or URI of an image to plot on the globe surface.
#' @param lat Optional data point decimal latitudes, must be of same length as \code{long}
#' (negative values indicate south, positive north).
#' @param long Optional data point decimal longitudes, must be of same length as \code{lat}
#' (negative values indicate west, positive east).
#' @param color Either a single color value indicating the color of all data points, or a
#' vector of values of the same length as \code{lat} indicating color of each point.
#' @param value Either a single value indicating the height of all data points, or a vector of
#' values of the same length as \code{lat} indicating height of each point.
#' @param arcs Optional four-column data frame specifying arcs to plot. The columns of the data frame,
#' in order, must indicate the starting latitude, starting longitude, ending latitude, and ending longitude.
#' @param arcsColor Either a single color value indicating the color of all arcs, or a vector of values
#' of the same length as the number of rows of \code{arcs}.
#' @param arcsLwd Either a single value indicating the line width of all arcs, or a vector of values of
#' the same length as the number of rows of \code{arcs}.
#' @param arcsHeight A single value between 0 and 1 controlling the height above the globe of each arc.
#' @param arcsOpacity A single value between 0 and 1 indicating the opacity of all arcs.
#' @param atmosphere TRUE enables WebGL atmpsphere effect.
#' @param bg Plot background color.
#' @param width The container div width.
#' @param height The container div height.
#' @param ... Additional arguments to pass to the three.js renderer (see
#' below for more information on these options).
#'
#' @return
#' An htmlwidget object (displayed using the object's show or print method).
#'
#' @note
#' The \code{img} argument specifies the WebGL texture image to wrap on a
#' sphere. If you plan to plot points using \code{lat} and \code{lon}
#' the image must be a plate carree (aka lat/long) equirectangular
#' map projection; see
#' \url{https://en.wikipedia.org/wiki/Equirectangular_projection} for
#' details.
#' Lat/long maps are commonly found for most planetary bodies in the
#' solar system, and are also easily generated directly in R
#' (see the references and examples below).
#'
#' @section Available rendering options:
#' \itemize{
#' \item{"bodycolor"}{ The diffuse reflective color of the globe.}
#' \item{"emissive"}{ The emissive color of the globe object.}
#' \item{"lightcolor"}{ The color of the ambient light in the scene.}
#' \item{"fov"}{ The initial field of view, default is 35.}
#' \item{"rotationlat"}{ The initial globe latitudinal rotation in radians, default is 0.}
#' \item{"rotationlong"}{ The initial globe longitudinal rotation in radians, default is 0.}
#' \item{"pointsize"}{ The numeric size of the points/bars, default is 1.}
#' \item{"renderer"}{ Manually set the three.js renderer to one of 'auto' or 'canvas'.
#' The canvas renderer works across a greater variety of
#' viewers and browsers. The default setting of 'auto' automatically chooses
#' WebGL rendering if it's available.}
#' }
#' Specify colors with standard color names or hex color representations.
#' The default values (well-suited to many earth-like map images) are
#' \code{lightcolor = "#aaeeff"}, \code{emissive = "#000000"}, and \code{bodycolor = "#ffffff"}.
#' Larger \code{fov} values result in a smaller (zoomed out) globe.
#' The latitude and longitude rotation values are relative to the center of
#' the map image. Their default values of zero radians result in the front of the
#' globe corresponding to the center of the flat map image.
#'
#' @references
#' The three.js project \url{http://threejs.org}.
#' (The corresponding three.js javascript file is in
#' \code{ system.file("htmlwidgets/globejs",package="threejs")}.)
#'
#' An excellent overview of available map coordinate reference systems (PDF):
#' \url{https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf}
#'
#' Includes images adapted from the NASA Earth Observatory and NASA Jet Propulsion Laboratory.
#' World image link: \url{http://goo.gl/GVjxJ}.
#'
#' @examples
#' # Plot flights to frequent destinations from Callum Prentice's
#' # global flight data set,
#' # http://callumprentice.github.io/apps/flight_stream/index.html
#' data(flights)
#' # Approximate locations as factors
#' dest <- factor(sprintf("%.2f:%.2f",flights[,3], flights[,4]))
#' # A table of destination frequencies
#' freq <- sort(table(dest), decreasing=TRUE)
#' # The most frequent destinations in these data, possibly hub airports?
#' frequent_destinations <- names(freq)[1:10]
#' # Subset the flight data by destination frequency
#' idx <- dest %in% frequent_destinations
#' frequent_flights <- flights[idx, ]
#' # Lat/long and counts of frequent flights
#' ll <- unique(frequent_flights[,3:4])
#' # Plot frequent destinations as bars, and the flights to and from
#' # them as arcs. Adjust arc width and color by frequency.
#' globejs(lat=ll[,1], long=ll[,2], arcs=frequent_flights, bodycolor="#aaaaff",
#' arcsHeight=0.3, arcsLwd=2, arcsColor="#ffff00", arcsOpacity=0.15,
#' atmosphere=TRUE, color="#00aaff", pointsize=0.5)
#'
#' \dontrun{
#' # Plot populous world cities from the maps package.
#' library(threejs)
#' library(maps)
#' data(world.cities, package="maps")
#' cities <- world.cities[order(world.cities$pop, decreasing=TRUE)[1:1000],]
#' value <- 100 * cities$pop / max(cities$pop)
#' col <- colorRampPalette(c("cyan", "lightgreen"))(10)[floor(10 * value/100) + 1]
#' globejs(lat=cities$lat, long=cities$long, value=value, color=col, atmosphere=TRUE)
#'
#' # Plot the data on the moon:
#' moon <- system.file("images/moon.jpg", package="threejs")
#' globejs(img=moon, bodycolor="#555555", lightcolor="#aaaaaa",
#' lat=cities$lat, long=cities$long,
#' value=value, color=col)
#'
#' # Plot a high-resolution NASA MODIS globe, setting colors to more closely reproduce
#' # the natural image colors. Note that this example can can take a while to download!
#' globejs("http://goo.gl/GVjxJ")
#'
#' # Using global plots from the maptools, rworldmap, or sp packages.
#'
#' # Instead of using ready-made images of the earth, we can use
#' # many R spatial imaging packages to produce globe images
#' # dynamically. With a little extra effort you can build globes with total
#' # control over how they are plotted.
#'
#' library(maptools)
#' library(threejs)
#' data(wrld_simpl)
#'
#' bgcolor <- "#000025"
#' earth <- tempfile(fileext=".jpg")
#'
#' # NOTE: Use antialiasing to smooth border boundary lines. But! Set the jpeg
#' # background color to the globe background color to avoid a visible aliasing
#' # effect at the the plot edges.
#'
#' jpeg(earth, width=2048, height=1024, quality=100, bg=bgcolor, antialias="default")
#' par(mar = c(0,0,0,0), pin = c(4,2), pty = "m", xaxs = "i",
#' xaxt = "n", xpd = FALSE, yaxs = "i", bty = "n", yaxt = "n")
#' plot(wrld_simpl, col="black", bg=bgcolor, border="cyan", ann=FALSE,
#" axes=FALSE, xpd=FALSE, xlim=c(-180,180), ylim=c(-90,90),
#' setParUsrBB=TRUE)
#' dev.off()
#' globejs(earth)
#'
#' # A shiny example:
#' shiny::runApp(system.file("examples/globe",package="threejs"))
#' }
#'
#' # See http://bwlewis.github.io/rthreejs for additional examples.
#' @export
globejs <- function(
img=system.file("images/world.jpg", package="threejs"),
lat, long,
value=40,
color="#00ffff",
arcs,
arcsColor="#99aaff",
arcsHeight=0.4,
arcsLwd=1,
arcsOpacity=0.2,
atmosphere=FALSE,
bg="black",
height = NULL,
width = NULL, ...)
{
if (missing(lat) || missing(long))
{
lat <- NULL
long <- NULL
}
# Strip alpha channel from colors
i <- grep("^#", color)
if (length(i) > 0)
{
j <- nchar(color[i]) > 7
if (any(j))
{
color[i][j] <- substr(color[i][j], 1, 7)
}
}
i <- grep("^#", arcsColor)
if (length(i) > 0)
{
j <- nchar(arcsColor[i]) > 7
if (any(j))
{
arcsColor[i][j] <- substr(arcsColor[i][j], 1, 7)
}
}
i <- grep("^#", bg)
if (length(i) > 0) bg <- substr(bg, 1, 7)
if (missing(arcs))
arcs <- NULL
else
{
arcs <- data.frame(arcs)
names(arcs) <- c("fromlat", "fromlong", "tolat", "tolong")
}
arcsHeight <- max(min(arcsHeight, 1), 0.2)
arcsOpacity <- max(min(arcsOpacity, 1), 0)
options <- list(lat=lat, long=long, color=color, arcsOpacity=arcsOpacity,
value=value, atmosphere=atmosphere, bg=bg, arcs=arcs,
arcsColor=arcsColor, arcsLwd=arcsLwd, arcsHeight=arcsHeight)
additional_args <- list(...)
if (length(additional_args) > 0) options <- c(options, additional_args)
# Clean up optional color arguments
if ("bodycolor" %in% names(options))
{
i <- grep("^#", options$bodycolor)
if (length(i) > 0) options$bodycolor <- substr(options$bodycolor, 1, 7)
}
if ("emissive" %in% names(options))
{
i <- grep("^#", options$emissive)
if (length(i) > 0) options$emissive <- substr(options$emissive, 1, 7)
}
if ("lightcolor" %in% names(options))
{
i <- grep("^#", options$lightcolor)
if (length(i) > 0) options$lightcolor <- substr(options$lightcolor, 1, 7)
}
# Convert image files to dataURI using the texture function
if (!is.list(img)) img <- texture(img)
x <- c(img, options)
htmlwidgets::createWidget(
name = "globe",
x = x,
width = width,
height = height,
htmlwidgets::sizingPolicy(padding = 0, browser.fill = TRUE),
package = "threejs")
}
#' @rdname threejs-shiny
#' @export
globeOutput <- function(outputId, width = "100%", height = "600px") {
shinyWidgetOutput(outputId, "globe", width, height,
package = "threejs")
}
#' @rdname threejs-shiny
#' @export
renderGlobe <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) {
expr <- substitute(expr)
} # force quoted
shinyRenderWidget(expr, globeOutput, env, quoted = TRUE)
}