-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphnemonia_classifier[1].py
50 lines (35 loc) · 1.83 KB
/
phnemonia_classifier[1].py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import MaxPooling2D
from keras.layers import Convolution2D
from keras.layers import Flatten
classifier=Sequential()
classifier.add(Convolution2D(32,4,4,input_shape=(100,100,3),activation='relu'))
classifier.add(MaxPooling2D(3,3))
classifier.add(Convolution2D(32,4,4,input_shape=(100,100,3),activation='relu'))
classifier.add(MaxPooling2D(3,3))
classifier.add(Flatten())
classifier.add(Dense(output_dim=128,activation='relu'))
classifier.add(Dense(output_dim=1,activation='sigmoid'))
classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('train',
target_size = (100, 100),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('test',
target_size = (100, 100),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
samples_per_epoch = 8000,
nb_epoch = 50,
validation_data = test_set,
nb_val_samples = 2000)
classifier.save_weights('phnemonia_wights.h5')
classifier.save('my_model.h5')