forked from ValentinaGogulancea/nufeb-ibm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiffMatrices.m
165 lines (125 loc) · 6.68 KB
/
DiffMatrices.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
function [R, Fb_layer, BB1, BB2, BB3, LL, UU] = DiffMatrices(R, Fdiv)
% the matrices are updated after each diffusion event
persistent Lxy Bc
Fb_layer = 0;
if Fdiv == 1
[R.Sxy, R.kTr, Fb_layer, Bc, Lxy] = b_layer(Bc, Lxy, R.Sxy, R.kTr, R.St, R.bac.bac_y); % commented bellow
aux_x= R.Sxy.x_pn-R.Sxy.dx/2; aux_x1 = R.Sxy.x_pn + R.Sxy.dx/2; % coordinates of the beginning and the end of a grid cell
aux_y= R.Sxy.y_pn-R.Sxy.dy/2; aux_y1 = R.Sxy.y_pn + R.Sxy.dy/2;
c = zeros(R.bac.bac_n,R.Sxy.nT);
for i = 1: R.Sxy.nT
% this is to check if bacteria i is found in grid cell j
c1 = (R.bac.bac_x >= aux_x(i)).*(R.bac.bac_x <= aux_x1(i)); % x-coordinate of bacteria i is between the edges of the cell
c2 = (R.bac.bac_y >= aux_y(i)).*(R.bac.bac_y <= aux_y1(i)); % y-coordinate
c(:,i) = c1.*c2;
end
R.Sxy.c = c; %this tells us if the centre of bacteria x is in grid defined by i-i+1 and j-j+1
end
St = R.St;
Sxy = R.Sxy;
if Fdiv == 1
% returns the rates of growth for bacteria, reaction rates for solubles
R = massBal( Sxy.StVLiq2, Sxy.StVGas, R.bac.bac_m, R); % commented in the corresponding function
% updated reaction rates
end
D = speye(Sxy.nT);
ind = [Sxy.nT*((1:St.numStVLiq2)'-1)+1,Sxy.nT*(1:St.numStVLiq2)'];
% tells one from where to where are the concentrations of species 1,2, etc
% in each grid cell of the biofilm + b- layer domain
aux = Sxy.nT; % number of grid cells
aux2 = aux*St.numStVLiq2; % number of concentration values
a = R.kTr.a; % diffusion coeff/2
% full of zeros
LL = sparse(aux2, aux2); UU = sparse(aux2, aux2); BB1 = sparse(aux2, aux2); BB2 = sparse(aux2, aux2); BB3 = sparse(aux2, aux2);
[I,J] = ind2sub([aux, aux],1:aux*aux);
for k = 1:St.numStVLiq2
aa = a(ind(k,1):ind(k,2),ind(k,1):ind(k,2));
A = D - aa.*Lxy; % the term at t+1
BB1i = D + aa.*Lxy; % the term at t
B2 = 2*aa.*Bc; % the coefficients for boundary conditions of Dirichlet type
B3 = sparse(1:aux,1:aux,ones(Sxy.nT,1),aux,aux); % identity sparse matrix
[L,Ui] = lu(A); % perform LU decomposition
LL = LL + sparse((k-1)*aux+I,(k-1)*aux+J,reshape(L, [],1),aux2,aux2); % Lower matrix for all liquid species
UU = UU + sparse((k-1)*aux+I,(k-1)*aux+J,reshape(Ui, [],1),aux2,aux2); % Upper matrix for all liquid species
BB1 = BB1 + sparse((k-1)*aux+I,(k-1)*aux+J,reshape(BB1i, [],1),aux2,aux2);
BB2 = BB2 + sparse((k-1)*aux+I,(k-1)*aux+J,reshape(B2, [],1),aux2,aux2);
BB3 = BB3 + sparse((k-1)*aux+I,(k-1)*aux+J,reshape(B3, [],1),aux2,aux2);
end
end
function [Sxy, kTr, Fb_layer, Bc, Lxy] = b_layer(Bc, Lxy, Sxy, kTr, St, bac_y)
% establishes where the boundary layer + biofilm are
y_biof = [min(bac_y), max(bac_y)]; % corodinates of the biofilm minimum and maximum height
dx = Sxy.dx; dy = Sxy.dy; % discretization size
maxy = y_biof(2) + dy + Sxy.T_blayer; % maximum height of the biofilm + boundary layer + one discretization cell higher
pos_maxy = find((Sxy.ySys >= maxy),1); % finds the position of the y coordinates corresponding to this point in the discretization
if isempty(pos_maxy)
pos_maxy = length(Sxy.ySys); % if the maximum is not reached - position of the height of the computational domain
end
x = Sxy.xSys; % number of points on Ox
y = Sxy.ySys(1:pos_maxy);% number of points on Oy
nx = length(x)-1+2; % number of coordinates on Ox
ny = length(y)-1+2; % number of coordinates on Oy - limited to biofilm + b-layer
pos_xySys_old = Sxy.pos_xySys; % keep the position of the old biofilm + b-layer
ax = ones(Sxy.nxSys-2,1); % auxiliary variables used for the computation of Sxy
ay = zeros(Sxy.nySys-2,1);
ay(1:ny-2) = 1;
% Sxy.pos_xySys - length = number of grid cells in the discretization
% vector of 0 & 1's that shows which grid cells are in the bulk (0) and which are in the biofilm + b-layer (1)
Sxy.pos_xySys = kron(ax, ay);
%
Fb_layer = sum(ne(Sxy.pos_xySys, pos_xySys_old)) > 0; % checks if the new b-layer is different from the old one
if Fb_layer == 1 % if it is
nT = (nx-2)*(ny-2); % number of grid cells
xp = x + dx/2; % half intervals
Sxy.x_pn = kron(xp(1:end-1)', ones(ny-2,1)); % x-coordinates of the center of a grid cell
yp = y + dy/2;
Sxy.y_pn = kron(ones(nx-2,1),yp(1:end-1)'); % y-coordinates of the center of a grid cell
Sxy.nx = nx;
Sxy.ny = ny;
Sxy.nT = nT;
Sxy.x = x;
Sxy.y = y;
% multiplies & extends the boundary conditions for all the biofilm + b-layer domain
S = kron([Sxy.Sbc_Dir;St.StVLiq(St.numStVLiq2:St.numStVLiq)], ones(Sxy.nTSys,1));
if ne(pos_xySys_old, 555)% if it's not the first time it is run - use for all the initial concentrations
S(kron(ones(St.numStVLiq,1),pos_xySys_old)==1) = Sxy.StVLiq; % in the places where it was before - use the existing computed concentrations
end
Sxy.StVLiq = S(kron(ones(St.numStVLiq,1),Sxy.pos_xySys)==1); % values for the soluble species concentrations in biofilm + b-layer
Sxy.StVGas = Sxy.StVLiq(St.numStVLiq2*Sxy.nT+1:end ); % values for the gas species concentrations in biofilm + b-layer
Sxy.StVLiq2 = Sxy.StVLiq(1:St.numStVLiq2*Sxy.nT); % values for the liquid species concentrations in biofilm + b-layer
S = Sxy.pHnT;
if ne(pos_xySys_old, 555)
S(pos_xySys_old==1) = Sxy.pH;
end
Sxy.pH = S(Sxy.pos_xySys==1); % use the values of pH only for biofilm + b-layer grid cells
kTr.Diffwater = kron(kTr.Diffn, ones(Sxy.nT,1));% diffusion coefficients in biofilm+BL
S = kron(kTr.Diffn, ones(Sxy.nTSys,1)); % extend these values to the whole biofilm + b-layer
if ne(pos_xySys_old, 555)
S(kron(ones(St.numStVLiq2,1),pos_xySys_old)==1) = kTr.Diff;
end
kTr.Diff = S(kron(ones(St.numStVLiq2,1),Sxy.pos_xySys)==1);
% this is the part that assembles the laplacian matrices for
% computations - the left hand side of the diffusion reaction equation
Ix = speye(nx-2);
Iy = speye(ny-2);
%Laplacian Matrix
Ex1 = sparse(2:nx-2,1:nx-3,1,nx-2,nx-2);
Ax = Ex1+Ex1'-2*Ix;
Ey1 = sparse(2:ny-2,1:ny-3,1,ny-2,ny-2);
Ay = Ey1+Ey1'-2*Iy;
%Dirichlet boundary conditions
%%Wall
Ay(1,1)=-1;
%%Cyclic boundary conditions in the sides
Ax(1,nx-2)=1; Ax(nx-2,1)=1;
Lxy = kron( Ix, Ay/dy^2) + kron( Ax/dx^2, Iy);% they go at Ay and Ay respectively
%Boundary conditions Matrix
bcy = zeros(ny-2, ny-2);
bcx = zeros((nx-2),(nx-2));
%%Dirichlet boundary condition
bcy(ny-2,ny-2) = 1;
% the other laplacian that must be added for boundary conditions
% updating in the diff reaction solving algorithm
Bc = kron(Ix, bcy/dy^2 ) + kron( bcx/dx^2, Iy); % tells where the conditions are Dirichlet and where they are not /dy^2 /dx^2
end
end