-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathastar.go
271 lines (230 loc) · 6.36 KB
/
astar.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
package astar
import (
"log"
"math"
"slices"
)
// cardinalSuccessors are the offsets for the 4 cardinal directions.
var cardinalSuccessors = []Vec2{
{0, -1}, // Up
{1, 0}, // Right
{0, 1}, // Down
{-1, 0}, // Left
}
// diagonalSuccessors are the offsets for the 8 cardinal and diagonal
// directions.
var diagonalSuccessors = []Vec2{
{0, -1}, // Up
{1, -1}, // Up-Right
{1, 0}, // Right
{1, 1}, // Right-Down
{0, 1}, // Down
{-1, 1}, // Down-Left
{-1, 0}, // Left
{-1, -1}, // Up-Left
}
// heuristicFunc is a function that calculates the distance between two vectors.
type heuristicFunc func(Vec2, Vec2) int
// getSuccessorsFunc is a function that returns the successors of a vector for
// a given search space.
type getSuccessorsFunc func(v Vec2) []Vec2
// node is a node in the search space.
type node struct {
pos Vec2 // Position
parent *node // Parent node
g int // Cost from start node
h int // Heuristic cost to end node
f int // F = G + H
weight int // Weight of the node (0 = impassable)
open bool // In open list
closed bool // In closed list
}
// Pathfinder is a simple A* pathfinding algorithm implementation.
type Pathfinder struct {
weights Grid[int]
options option
heuristic heuristicFunc
getSuccessors getSuccessorsFunc
}
// NewPathfinder creates a new Pathfinder with the given weights and options.
// The weights are used to determine the cost of traversing a cell. A weight of
// 0 means the cell is not traversable. A weight of 1 or higher means the cell
// is traversable.
func NewPathfinder(weights Grid[int], opts ...Option) Pathfinder {
opt := option{
heuristic: man,
}
for _, optFunc := range opts {
optFunc(&opt)
}
pf := Pathfinder{
weights: weights,
options: opt,
heuristic: manhattan,
getSuccessors: func(v Vec2) []Vec2 {
return getSuccessors(v, weights.Width, weights.Height, cardinalSuccessors)
},
}
switch opt.heuristic {
case man:
pf.heuristic = manhattan
case dd:
pf.heuristic = diagonalDistance
case euc:
pf.heuristic = euclideanDistance
default:
log.Printf("unknown heuristic: %d", opt.heuristic)
}
if opt.diagonals {
if opt.heuristic == man {
pf.heuristic = diagonalDistance
}
pf.getSuccessors = func(v Vec2) []Vec2 {
return getSuccessors(v, weights.Width, weights.Height, diagonalSuccessors)
}
}
return pf
}
// Find returns a path from start to end. If no path is found, an empty slice
// is returned.
func (p Pathfinder) Find(startPos, endPos Vec2) []Vec2 {
searchSpace := newSearchSpace(p.weights) // tracks the open, closed and f values of each node
open := newMinHeap(searchSpace.Width, searchSpace.Height) // prioritised queue of f
start := searchSpace.Get(startPos)
start.f = 0
start.open = true
open.push(heapNode{pos: startPos, f: start.f})
searchSpace.Set(startPos, start)
for open.len() > 0 {
qPos := open.pop().pos
q := searchSpace.Get(qPos)
for _, succPos := range p.getSuccessors(qPos) {
successor := searchSpace.Get(succPos)
// not traversable
if successor.weight == 0 {
continue
}
successor.parent = &q
g := q.g + p.heuristic(qPos, succPos)
if p.options.punishChangeDirection {
g += punishChangeDirection(q, succPos, endPos)
}
successor.g = g
successor.h = p.heuristic(succPos, endPos)
successor.f = successor.g + successor.h
successor.open = true
// found
if succPos == endPos {
path := []Vec2{}
curr := &successor
for curr != nil {
path = append(path, curr.pos)
curr = curr.parent
}
slices.Reverse(path)
return path
}
// check if more optimal path to successor was already encountered
existingSuccessor := searchSpace.Get(succPos)
if existingSuccessor.open && existingSuccessor.f < successor.f {
continue
}
if existingSuccessor.closed && existingSuccessor.f < successor.f {
continue
}
searchSpace.Set(succPos, successor)
open.push(heapNode{pos: succPos, f: successor.f})
}
q.closed = true
searchSpace.Set(qPos, q)
}
// not found
return []Vec2{}
}
// punishChangeDirection returns a punishment for changing direction that can be applied to g.
func punishChangeDirection(q node, successor, end Vec2) int {
if q.parent == nil {
return 0
}
punishment := abs(successor.X-end.X) + abs(successor.Y-end.Y)
if !isHorizAdj(q.pos, successor) {
if isHorizAdj(q.pos, q.parent.pos) {
return punishment
}
}
if !isVertAdj(q.pos, successor) {
if isVertAdj(q.pos, q.parent.pos) {
return punishment
}
}
if !isDiagAdj(q.pos, successor) {
if isDiagAdj(q.pos, q.parent.pos) {
return punishment
}
}
return 0
}
// manhattan calculates the Manhattan distance between two vectors by summing
// the absolute values of the differences of their components. It does not
// support diagonal movement.
func manhattan(v1, v2 Vec2) int {
return abs(v1.X-v2.X) + abs(v1.Y-v2.Y)
}
// diagonalDistance calculates the diagonal distance between two vectors.
func diagonalDistance(v1, v2 Vec2) int {
dx := abs(v1.X - v2.X)
dy := abs(v1.Y - v2.Y)
diagonal := float64(min(dx, dy))
straight := float64(dx + dy)
return int(straight + (float64(math.Sqrt2)-2)*diagonal)
}
// euclideanDistance calculates the Euclidean distance between two vectors.
func euclideanDistance(v1, v2 Vec2) int {
// pythagorean
h := math.Sqrt(
math.Pow(float64(v1.X-v2.X), 2) + math.Pow(float64(v1.Y-v2.Y), 2),
)
return int(h)
}
// abs returns the absolute value of x.
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
// min returns the minimum of x1 and x2.
func min(x1, x2 int) int {
if x1 < x2 {
return x1
}
return x2
}
// getSuccessors returns the successors of a vector. If a successor is outside
// of the grid, it is not included.
func getSuccessors(vec Vec2, width, height int, offsets []Vec2) []Vec2 {
results := make([]Vec2, 0, len(offsets))
for _, n := range offsets {
x := vec.X + n.X
y := vec.Y + n.Y
if x < 0 || x >= width || y < 0 || y >= height {
continue
}
results = append(results, Vec2{x, y})
}
return results
}
// newSearchSpace creates a new search space from the given weights.
func newSearchSpace(weights Grid[int]) Grid[node] {
grid := NewGrid[node](weights.Width, weights.Height)
for x := range weights.Width {
for y := range weights.Height {
node := node{
pos: Vec2{x, y},
weight: weights.Get(Vec2{x, y}),
}
grid.Set(node.pos, node)
}
}
return grid
}